Автомобильный пейджер. Схема радио-пейджера сигнализации

Помните фильм «Брюс Всемогущий»? Где бог отправлял главному герою сообщения на маленькое электронное устройство? Сегодня мы решили вспомнить пейджер – символ достатка в России девяностых и старшего брата современных мобильных телефонов.

Кадр из фильма «Брюс Всемогущий» (2003)

Что такое пейджер

Тридцатилетним может и смешно от этого вопроса, а вот нынешние школьники уже и не знают, что была такая штука. Пейджер – миниатюрный радиоприемник, который позволяет принимать короткие сообщения на определенной частоте. Все сообщения отправляются через оператора: вы звоните в операторскую, диктуете сообщение и номер абонента. А оператор отправляет сообщение адресату. Позже появились двусторонние пейджеры, которые позволяют общаться без посредников.

Первый пейджер представила компания Motorola в 1956 году. Он принимал сигналы в радиусе 200 метров и выдавал короткий звуковой сигнал, за что получил свое второе название – бипер, от английского Beep. Тогда пейджеры использовались для оснащения больниц, а с развитием технологии и увеличением радиуса действия они нашли применение в полицейских участках и службах спасения.


Кадр из клипа Eminem «Stan» (2000)

Но мировую популярность миниатюрные устройства снискали только в середине 80-х, когда в 1986 году Motorola выпустила Bravo - самую популярную модель пейджера с тремя кнопками и трехстрочным дисплеем.

В 1996 году в мире пейджерами пользовались почти 100 миллионов человек.

Как устроен пейджер

В его основе стоит радиоприемник, настроенный на определенную частоту приема пейджинговой компании и формат принимаемых сообщений. Кроме того, был декодер, микро-ЭВМ - “мозги” пейджера, несколько кнопок и позже - дисплей.


Структурная схема пейджера

В каждый пейджер встроены кэп-коды - физические адреса, личные и групповые. Личный адрес уникален для каждого устройства, а групповые одинаковы у всех пейджеров с общей языковой кодировкой. Все кэп-коды хранятся в базе данных оператора. Когда клиент звонит оператору и называет номер абонента, оператор находит его личный кэп-код и отправляет сообщение.

В разных странах пейджинговая связь работает с разными форматами. Самая распространенный - протокол POCSAG, разработанный в Великобритании в 1978 году. Он успешно применяется до сих пор, скорость передачи сообщений 512, 1200 или 2400 бит/сек.

Более скоростной протокол Flex создала Motorola в 1993 году. В нем использовалась синхронная передача данных, сообщения передавались со скоростью 1600, 3200 и 6400 бит/сек. Flex способен поддерживать более 5 млрд адресов - это в два раза больше, чем у POCSAG.

Специально для Европы был разработан протокол ERMES, полностью совместимый со стандартом связи GSM и адаптированный к другим европейским разработкам сотовых сетей. Формат был создан в рамках создания общеевропейской системы персонального радиовызова и работал в диапазоне частот 169,4 – 169,8 МГц.

Всего было три основных типа устройств: тональные - пейджеры первого поколения, они же биперы, цифровые - передавали информацию только в цифровом виде и текстовые - с помощью которых можно было отправлять сообщения.

Последним словом в развитии пейджинга стали твейджеры: оснащенные qwerty-клавиатурой, с двусторонней связью, они позволяли общаться без посредников. Первый твейджер Tango выпустила Motorola совместно с национальным американским оператором SkyTel в 1996 году. Но уже тогда было понятно, что век маленьких пищащих устройств заканчивается - мир активно завоевывала мобильная связь.


Кадр из фильма «Нулевой эффект» (1998)

Пейджеры в России: Пепси, пейджер, МТV

Пейджинговая связь появилась в СССР к концу 60-х – ей пользовались сотрудники «скорой» и некоторых госструктур. В 1979 году, во время подготовки к Олимпиаде-80, английская компания Multitone развернула в Москве сеть «Радиопоиск», которая работала на частоте около 43 МГц. Она решала задачу быстрой передачи команд исполнителям торжеств и координировала их действия.

Широкая общественность пейджерами не пользовалась до самого распада Советского Союза.

В разгар 90-х это был символ обеспеченной жизни: громоздкие мобильные телефоны с их астрономическими ценами (Nokia Mobira стоил 2000 $ и весил три килограмма), могли позволить себе единицы, а пейджеры распространились шире. Но обслуживание все равно было дорогим : подключение около 350 $, и абонентская плата 50-70 $ в месяц. Первый русифицированный пейджер выпустили на рынок уже упомянутые Multitone – модель MIT-472 стоила 380 долларов и могла принимать сообщения размером до 7500 символов. Теоретически, на такое устройство можно отправить этот текст - его объем чуть больше 7 с половиной тысяч знаков. На дисплее одновременно отображалось максимум 94 символа.

Если денег не было, а выделиться хотелось, то желающие покупали электронные часы, похожие на пейджер, и гордо вешали их на пояс.

По всей стране насчитывались десятки пейджинговых компаний: федеральных операторов не было, а количество региональных сильно отличалось в зависимости от региона.

Качество связи зависело от количества передатчиков у оператора, их мощности и расположения. Например, на Останкинской башне работали передатчики мощностью 350 Ватт и радиусом покрытия 70-80 км. В конце 90-х использовались передатчики Motorola или их отечественные аналоги ЖМ-300. Иногда на них ставили усилители.

Каждый оператор работал на своей частоте. Компания закупала пейджеры, запрограммированные на эту частоту и настраивала на нее передатчики. Либо можно было заказать свободные пейджеры, и потом настроить их на свою частоту. Но этот вариант более долгий, т.к. в основном устройства привозили из Юго-Восточной Азии.

Почти весь рынок разделили между собой 11 крупных компаний : “Мобил-Телеком”, “Вессо-Линк”, “Информ-Экском” и другие. На долю мелких операторов осталось 3% от всего объема клиентов.

По данным Госкомсвязи (ныне Минкомсвязи РФ) за период с 1994 по 1996 год количество абонентов увеличилось в 20 раз, и к началу 1998 года в России пейджинговой связью пользовались около 300 тыс. человек. Более 70% рынка было сосредоточено в Москве и Санкт-Петербурге: в столице пейджерами пользовался 1,1% населения, в Питере - 0,6%. К 2000 году планировалось увеличить число клиентов в три раза. Но этим планам было не суждено сбыться.

В начале нулевых мобильные телефоны начали активно вытеснять пейджеры с российского рынка связи. Еще в 2000 году Децл вещал юному поколению: «Пепси, пейджер, MTV, подключайся!», а в 2005 мобильники были уже у 80% населения. В 2007 году вышел первый iPhone.
О пейджерах забыли.

Пейджеры сегодня

В массовом сознании маленькие черные коробочки давно вытеснили современные смартфоны, но пейджеры до сих пор живы. Ими пользуются сотрудники больниц для экстренной связи, МЧС, МВД, крупных центров обслуживания автомобилей, некоторых АЭС.

В Штатах пейджерами пользуются в больницах, службах спасения, полиции – можно сказать, что они вернулись домой после своего шествия по миру. Получив сообщение, доктор стремится в операционную, спасатели - на вызов, сотрудники полиции - на место происшествия.

Сегодня в Москве работают две пейджинговые компании – Телекомт и Информ-Экском . Мы пообщались с человеком, который занимается этим видом связи с 1993 года, и вот что он нам рассказал.

Плотность покрытия пейджинговой вышки больше: она работает там, где не ловит сотовая связь, а шлюзы не так нагружены, поэтому передать экстренное сообщение на пейджер получится быстрее. Устройство не нужно заряжать, только менять батарейку типа ААА примерно раз в месяц.

Частные системы пейджинговой связи полностью подконтрольны заказчику: они созданы под его требования, не зависят ни от сотовых операторов, ни от перегрузок энергетических сетей и могут долго работать при отсутствии централизованного энергообеспечения.

Сегодня пейджинговая связь дешевая – ежемесячная абонентская плата начинается от 170 рублей в месяц, при этом деньги со счета украсть невозможно. Цена на сам пейджер колеблется от 700 до 2000 рублей. Все эти преимущества, по мнению оставшихся пейджинговых операторов, не дадут окончательно вытеснить пейджеры с рынка.

В свое время, в конце 90-х и начале 2000-х, я застал расцвет пейджинга. И хотя все это давно кануло в Лету, с тех пор у меня сохранился интерес к этой теме. И вот недавно я набрел на ссылку на страницу, рассказывающую о применении пейджинга в радиолюбительских целях: Digital Amateur POCSAG Paging . И понеслось…


На упомянутой странице есть ссылка на разработанный Henry N2RVQ энкодер протокола POCSAG на основе AVR микроконтроллера: http://users.rcn.com/carlott/avr_pocsag_11.zip . Эту схему я и повторил с некоторыми изменениями: вместо устаревшего AT90S2313 был использован микроконтроллер ATTiny2313 (tnx RD1AS за прошивку и консультации), а вместо интерфейса для COM порта на MAX232 был использован USB интерфейс на PL2303 в виде отдельного кабеля. Питание 5В взято с порта USB. Сама схема собрана на макетной плате.



В качестве передатчика я использовал радиостанцию Motorola GM300 диапазона 2 метра. Ее аксессуарный разъем вполне подходит для подключения этой конструкции. Сигнал POCSAG я подал на вход FLAT TX AUDIO. Для сопряжения уровней сигнала номинал резистора R5 1 КОМ был заменен на 470 КОМ.


Частота работы передатчика - 144,525 МГц.



Для простоты тестирования был использован пейджер NEC 26B, отличающийся синтезаторным, а не кварцованным, приемником - частота программируется с компьютера. Схему универсального программатора и софт для прошивки я нашел на сайте allpager.narod.ru . После сборки она заработала без каких-либо дополнительных настроек. Естественно, запускать программатор нужно из-под DOS.

Как я и предполагал, режим программирования пейджера оказался запаролен. Поиск способа сброса пароля занял несколько большее время, но все же увенчался успехом: универсальный пароль для входа в режим программирования пейджеров фирмы NEC - «repu».



Итак, частота и кэп-коды прошиты, пейджер «видит» передатчик.


Ориентируясь по прилагаемому к схеме энкодера синтаксису терминальных команд управления, я написал небольшую программу на Visual Basic - она позволяет отправлять сообщения непосредственно из окна программы и через сеть, транслировать DX кластер, а также передавать с заданным интервалом сигнал маяка в POCSAG, чтобы пейджер мог определять нахождение в зоне приема, и телеграфный маяк (в энкодере есть такая функция и отдельный выход), чтобы пейджинговый сигнал на любительской частоте не приняли за пиратский, hi-hi.



На данный момент, интервал телеграфного маяка - 3 минуты, маяка POCSAG - 2 минуты.


Настроено, отлажено, работает:




Через дуплексер пейджинговая радиостанция подключена к той же двухдиапазонной антенне Opek UVS-300, на которой работает и эхолинк RA1AIE-L на частоте 436.900 МГц.


Update: Тестирование системы завершено, готовится установка на постоянной основе на другом QTH.

Системы персонального вызова (системы пейджинговой радиосвязи) обеспечивают эффективное использование радиоканала, имеют низкую стоимость, простоту наращивания сети. Однако это, по сути, единственный вид односторонней радиосвязи.

Для создания сети и передачи сообщений на выделенной территории устанавливаются радиопередатчики с антеннами, которые формируют рабочую зону обслуживания.

3.1. Способ формирования рабочей зоны:

1. Радиальный – одна базовая станция, применяется для небольших городов, фирм и предприятий.

Рис. 3.1. Радиальная схема обслуживания абонентов

2. Сотовый – для больших городов. Пейджер работает на определенных частотах. Применяются различные способы передачи данных от базовых станций на абонентские терминалы.

Синхронное вещание – все станции работают одновременно. Предъявляются жесткие требования к аппаратуре, существенно удорожающие ее. Скорость передачи данных максимальна.

Временное разделение – базовые станции работаю поочередно, повторно передавая сообщения. Скорость передачи данных пропорционально уменьшается.

Для удаленных от основного места обслуживания территорий применяются репитеры – переизлучатели сообщений с необходимым усилением сигнала.

Рис. 3.2. Обслуживание абонентов в сотах

3.2. Структура сети персонального вызова

Структура основных элементов сети персонального вызова показана на рис. 3.3.

Р/телефон

Телефакс

Интерфейс доступа

Контроллер

Контроллер

обслуживания

Рис. 3.3. Структура основных элементов сети персонального вызова

3.3. Функциональная схема пейджера

Функционально пейджер представляет собой приемник с однократным (рис. 3.4) или двукратным преобразованием частоты. Имеются устройства хранения и отображения информации, а также звуковая индикация поступившего сообщения.

f пром = 455 кГц

УВЧ См ППФ Декодер УОХИ УОИ

Рис. 3.4. Функциональная схема пейджера:

УВЧ – усилитель высокой частоты: См – смеситель; Гет – гетеродин;

ППФ – полосовой фильтр; УОХИ – устройство обработки и хранения информации;

УОИ – устройство отображения информации

3.4. Стандарты кодирования в системах персонального вызова

Передача адресной информации и сообщений в цифровых системах (в том числе и в пейджинговых) осуществляется в определенном формате (протоколе) кодирования. История создания и развития протоколов пейджинговой связи насчитывает более полутора десятков различных форматов связи. Первым протоколом пейджинговой связи является двухтоновый формат, разработанный в 50-х годах фирмой MULTITON и предусматривающий передачу (предварявшую голосовое сообщение) на радиостанцию адреса – двух тоновых посылок различной частоты.

Долгое время после этого разрабатывались и применялись форматы связи, обеспечивающие работу тоновых пейджеров. К середине 70-х годов прошлого века были разработаны и внедрены широко применяемые и сегодня протоколы POCSAG, GOLEY, NEC, предусматривающие модуляцию высокочастотного сигнала двоичным кодом.

Наибольшее распространение в мире получил протокол POCSAG. Это универсальный протокол, позволяющий передавать цифровые, буквенноцифровые и тоновые сообщения на скорости 512, 1200 и 2400 бод, что поддерживает уникальную адресацию до 2 млн. номеров пейджеров и обеспечивает ресурс одной частоты СПРВ по количеству обслуживаемых абонентов в пределах 10 – 20 тыс.

POCSAG – наиболее распространенный в мире стандарт

Протокол POCSAG разработан Британским почтовым ведомством. Он предусматривает скорость передачи информации 512, 1200 и 2400 бит/сек. Сообщения передаются в асинхронном режиме: пакет сообщения может стартовать в любой момент времени и длина его не определена.

Сообщения передаются пакетами. В начале пакета находится преамбула - кодовое слово, состоящее из 576 бит (последовательность нулей и единиц – 010101010…..). Во время приема преамбулы пейджер переводится в режим приема сообщений и осуществляет тактовую синхронизацию.

синхронизации

Кодовое слово 1

Кодовое слово 2

Рис. 3.5. Структура протокола POCSAG

Каждому из кадров соответствует определенная группа пейджеров. Данная группа включается одновременно в режим приема сообщения в заданный временной интервал – кадр. Все пейджеры одновременно просматривают адресное поле. Далее в режиме приема остается только тот пейджер, адрес которого задан. Этим достигается экономия энергии аккумулятора. Если сообщение длинное, оно передается в течение нескольких пачек. Окончанием сообщения является «пустого» кодового слова или адреса другого пейджера. Слово синхронизации состоит из 32 бит, каждое кодовое слово – из 32 бит.

При скорости передачи 2400 бит/с длительность передачи одного бита составляет 0,417 мкс, время преамбулы равно 0,24 с.

Длительность одного кадра tk = 2 32 0,417 мкс = 26,6 мс

Длительность передачи одного пакета tп =tк 8 + 32 0,417 мкс = 0,2267 с

При полной нагрузке с каждой преамбулой передается 30 пакетов. Таким образом, за час можно передать 511 сообщений по 30 пакетов.

Диапазон частот работы системы POCSAG 146-174 МГц и 403-470 МГц. Полоса частот одного канала – 25 кГц.

Общеевропейский стандарт ERMES

Выбран единый частотный диапазон: 169,425 – 169,800 МГц, который разделен на 16 радиоканалов по 25 кГц. Полный цикл передачи – 1 час и состоит из 60 циклов по 1 минуте. Каждый цикл состоит из 5 субпоследовательностей по 12 с, состоящих из 16 пачек, обозначенных буквами латинского алфавита.

Рис. 3.6. Структура протокола ERMES

Группы пейджеров закреплены за определенной пачкой и синхронно сканируют все радиоканалы. Длительность передачи одной пачки составляет 0,75 с. При передаче сообщений на 16 частотных каналах пачки идут со смещением на одну. Таким образом, информационное сообщение, адресованное конкретному пейджеру, передается без перерывов.

A B C D E … M N O P t

Рис. 3.7. Перестройка частоты передачи в стандарте ERMES


Ниже представлено описание постройки пейджера для стандартного сигнализатора поклевки.
С дальностью действия 200 метров. Устройство работает в двух режимах:
1)Световая +вибро оповещение
2) Световая +вибро и + подключаемый звуковой сигнал

Для работы нам потребуется:
1)Корпуса (сами подбираете как вам удобнее)
2)Кнопки
3)светодиоды
4)Аудио штекеры и аудио входы на 2.5 мм
5)Стандартный сигнализатор поклевки
6)Паяльник
7)4 оптопары

И так начнем по порядку. Есть у меня вот такой сигнализатор поклевки


Снизу сигнализатора есть выход, как для наушников, только он под штекер 2.5 мм. При поклевке на сигнализаторе загорается светодиод и горит или мигает 15-20 секунд. Так вот пока горит светодиод, на этот выход подается небольшое напряжение, именно им я и решил воспользовался.


В магазине был куплен штекер


И 4 оптопары, к сожалению фото отдельно нет((Работа оптопары заключается в следующем: когда на два выхода подать небольшой ток то вторые два выхода 1 и 2 замкнутся, то есть работает она как кнопка


За основу была взята вот эта схема и доработана.

Передатчик


И приемник


Купил два подходящих корпуса, корпус для передатчика специально нашел что бы был с отсеком для батареи.




Развел платы под размер корпусов


И припаял все детали. Вибро моторчик взял из старого телефона.

Вот как в итоге получилось

Передатчик




И приемник






На корпусе приемника стоит два выключателя, 1 для включения самого пейджера, а второй включает и выключат звук.

Как видно на схемах батарейки стоят на 9 и 12 вольт, что намного превышает порог питания нашей схемы, поэтому пришлось поставить стабилизатор напряжения на 3.3 вольта AMS1117


Это позволяет использовать в передатчике батарейку минимальных размеров с большим напряжением, что продлевает срок эксплуатации.


На фото припаян еще один штекер на 3.5 мм, это было просто ради эксперимента. Суть его заключается в следующем. Разобрав сигнализатор, я к выводам динамика припаял провода и вывел еще один выход




Все это я сделал для того: Когда при поклевке (допустим она у нас была ложной или жаба леску задела), то сам сигнализатор издаст только один пик, ну а светодиод будет гореть 15-20 секунд, так же и пейджер у нас в руках будет пищать и мигать 15-20- секунд. А если передатчик подключить на другой выход, который идет от динамика, то нам и на пейджер передастся только один пик, а не будет пищать 15-20 секунд. Доработка не значительная, но в разы увеличивает продуктивность этого пейджера.

Охрана транспортного средства является весьма актуальной проблемой, несмотря на большое количество предлагаемых на рынке противоугонных устройств. Срабатывание звуковой сигнализации на автомобиле не дает хозяину практически никаких преимуществ по сравнению с автомобилями без сигнализации: окружающие люди обычно не реагируют на вой сирены, а хозяин находится достаточно далеко. Выходом является использование радиоканала и передача тревожного сигнала хозяину без лишнего шума. Преимущество такого способа сигнализации в том, что угонщик не подозревает о передатчике в автомобиле, и существует возможность с помощью направленной антенны найти угнанную машину. Для приема сигнала охранной системы можно использовать переделанный пейджер, который с повсеместным распространением "мобильников" все больше превращается в лежащую без дела игрушку.

Для охраны автомобилей выделена частота 26945 кГц. Но для того чтобы была возможность распознать конкретный передатчик, необходимо кодировать радиосигнал. Микросхемы, используемые в данной конструкции: МС145026 - кодер и МС145028 - декодер. Они позволяют сформировать 19683 различные комбинации при использовании только одной рабочей частоты внутреннего генератора микросхемы. При изменении частоты генератора, количество кодовых комбинаций увеличивается.

Пейджер представляет собой приемник с декодером импульсной последовательности, на котором перемычками устанавливается присущий вашему автомобилю код, и звуковой сигнализатор, включающийся при совпадении этого кода с полученным от передатчика. Передатчик в автомобиле включается в рабочий режим датчиком качания. Он передает частотно-модулированную импульсную последовательность. При срабатывании датчика передатчик включается на несколько секунд. Если "воздействие" на автомобиль прекращается, передатчик выключается.

Схема передатчика изображена на рис.1. На микросхеме DD1 и микроамперметре РА1 собран датчик качания. При изменении положения кузова, а следовательно, и микроамперметра, на выходе компаратора появляются отрицательные импульсы, устанавливающие RS-триггер на элементах DD2.3, DD2.4 в состояние, при котором на выводе 10 DD2.3 - высокий уровень. Он открывает транзисторы VT5 и VT6. Через VT5 подается питание на передатчик, и он включается. Напряжение логического "0" с вывода 11 DD2.4 поступает на разрешающий вход кодера DD4, а также на вход R счетчика DD3. До этого счетчик был постоянно сброшен в ноль логической "1" на входе R. Теперь он считает импульсы с генератора на DD2.1, DD2.2. Когда на выводе 6 DD3 появляется "1", открывается транзистор VT1 и возвращает RS-триггер и счетчик в первоначальное (дежурное) состояние.

Если воздействие на датчик к этому времени прекратилось, система остается в этом состоянии сколь угодно долго, а если нет, то RS-триггер вновь переключается импульсами с выхода компаратора DD1, и передатчик опять заработает.

Конденсатор С4 необходим для начального сброса счетчика и перевода RS-триггера в дежурный режим. Кодовые посылки с кодера DD4 поступают на частотный модулятор передатчика на элементах VD1, L1, L2, VT2, R12...R16, С7, С8, а затем на усилитель ВЧ на VT3, VT4, R17...R19, С9...С20, L3...L8.

Схема приемника показана на рис.2. Его высокочастотная часть аналогична описанной в . Цепь АРУ в данной схеме не нужна, поэтому усилитель микросхемы DD1 работает в режиме компаратора, рабочая точка которого устанавливается подстроечным резистором R1 по минимуму высокочастотных шумов. С выхода DD1 сигнал поступает на формирователь логического уровня на транзисторах VT2 и VT3. Кодовая последовательность декодируется микросхемой DD2, и при совпадении кодовых посылок на выводе 11 DD2 появляется логическая "1". Этим уровнем запускается генератор на микросхеме DD3, и звучит тревожный сигнал.

Кодовые комбинации устанавливаются изменением уровней на адресных входах DD2. Микросхемы кодера и декодера воспринимают три состояния: логические "0" и "1" и неподключенный адресный вход. Адреса должны быть установлены идентично как в кодере, так и в декодере, а также должна быть установлена одинаковая частота внутренних генераторов.

Налаживание системы сигнализации начинают с передатчика. Движок резистора R4 (рис.1) устанавливают в такое положение, при котором на выходе 9 компаратора DD1 высокий уровень, но при легком постукивании по микроамперметру на выходе DD1 появляются отрицательные импульсы. Далее, отключив от резистора R12 вывод 15 DD4, подключают к нему генератор ЗЧ. Изменяя индуктивности катушек, добиваются максимального усиления УВЧ.

Затем устанавливают рабочую точку микросхемы DD1 приемника резистором R1 (рис.2) и настраивают контура приемника генератором качающейся частоты . Для проверки правильности декодирования кода, выход 15 DD4 передатчика соединяют с входом 9 DD2 приемника, предварительно отключив его от формирователя логического уровня (VT3). При нормальной работе сигнализации срабатывание датчика качания вызывает появление на выходе 11 DD2 логической "1" и звука в пьезоизлучателе В1. Далее восстанавливают все соединения и отлаживают приемник совместно с передатчиком, принимая сигнал по радиоканалу.

В устройстве применены электролитические конденсаторы типа К50-35, неполярные - КМ. ТКЕ конденсаторов С5 (передатчика), С15, С16, С17 (приемника) должен быть минимален, можно использовать К73-17. Резисторы - типа МЛТ. Микроамперметр типа М476 датчика качания немного дорабатывают. На стрелке закрепляют грузик, так чтобы при опущенной вниз шкале прибора стрелка была в ее центре.

Моточные данные катушек передатчика приведены в табл.1, приемника - в табл.2.

Таблица 1. Моточные данные катушек передатчика

Позиционное обозначение Диаметр каркаса, мм Количество витков Сердечник Провод Примечание
L1 4,2 10 МП100 ПЭВ d0,31
L2 4,2 6 МП100 ПЭВ d0,25
L3 4,0 9 ПЭВ d0,31
L4 ДПМ1-0.6- 10мкГн
L5 6,0 3 ПЭВ d0,8
L6 4,0 15 ПЭВ d0,31
L7 ДПМ1-0.6 -8мкГн
L8 8,0 8 ПЭВ d0,8

Таблица 2. Моточные данные катушек приемника