Информационные системы спутниковой навигации. Спутниковые навигационные системы. Основные элементы спутниковой системы навигации

На смену бумажным картам местности пришли карты электронные, навигация по которым осуществляется с помощью спутниковой системы GPS. Из данной статьи вы узнаете, когда появилась спутниковая навигация, что представляет из себя сейчас и что ждет ее в ближайшем будущем.

Во время Второй мировой войны у флотилий США и Великобритании появился весомый козырь – навигационная система LORAN, использующая радиомаяки. По окончанию боевых действий технологию в свое распоряжение получили гражданские суда «про-западных» стран. Спустя десятилетие СССР ввела в эксплуатацию свой ответ – навигационная система «Чайка», основанная на радиомаяках, используется по сей день.

Но у наземной навигации есть существенные недостатки: неровности земного рельефа становятся преградой, а влияние ионосферы негативно сказывается на времени передачи сигнала. Если между навигационным радиомаяком и судном слишком большое расстояние, погрешность определения координат может измеряться километрами, что недопустимо.

На смену наземным радиомаякам пришли спутниковые навигационные системы для военных целей, первая из которых – американская Transit (другое название NAVSAT) – была запущена в 1964 году. Шесть низкоорбитальных спутников обеспечивали точность определения координат до двух сотен метров.


В 1976 году СССР запустила аналогичную военную навигационную систему «Циклон», а через три года – еще и гражданскую под названием «Цикада». Большим недостатком ранних систем спутниковой навигации было то, что пользоваться ими можно было лишь короткое время на протяжении часа. Низкоорбитальные спутники, да еще и в малом количестве, были не способны обеспечить широкое покрытие сигнала.

GPS vs. ГЛОНАСС

В 1974 году армия США вывела на орбиту первый спутник новой в то время системы навигации NAVSTAR, которую позже переименовали в GPS (Global Positioning System). В середине 1980-х технологию GPS разрешили использовать гражданским кораблям и самолетам, но на протяжении длительного времени им было доступно в разы менее точное позиционирование, чем военным. Двадцать четвертый спутник GPS, последний требовавшийся для полного покрытия поверхности Земли, запустили в 1993 году.

В 1982 году свой ответ представила СССР – им стала технология ГЛОНАСС (Глобальная навигационная спутниковая система). Завершающий 24-й спутник ГЛОНАСС вышел на орбиту в 1995 году, но малый срок эксплуатации спутников (три-пять лет) и недостаточное финансирование проекта почти на десятилетие вывели систему из строя. Восстановить всемирное покрытие ГЛОНАСС удалось только в 2010 году.


Чтобы избежать подобных сбоев, и GPS, и ГЛОНАСС сейчас используют 31 спутник: 24 основных и 7 резервных, как говорится, на всякий «пожарный» случай. Летают современные навигационные спутники на высоте порядка 20 тыс. км и за сутки успевают дважды облететь Землю.

Принцип работы GPS

Позиционирование в сети GPS проводится путем измерения расстояния от приемника до нескольких спутников, местоположение которых в текущий момент времени точно известно. Расстояние до спутника измеряется путем умножения задержки сигнала на скорость света.
Связь с первым спутником дает информацию лишь о сфере возможных расположений приемника. Пересечение двух сфер даст окружность, трех – две точки, а четырех – единственно верную точку на карте. В роли одной из сфер чаще всего используют нашу планету, что позволяет вместо четырех спутников позиционироваться только по трем. В теории точность позиционирования GPS может достигать 2 метров (на практике же погрешность значительно больше).


Каждый спутник отправляет приемнику большой набор информации: точное время и его поправку, альманах, данные эфемерид и параметры ионосферы. Сигнал точного времени требуется для измерения задержки между его отправкой и приемом.

Навигационные спутники оснащаются высокоточными цезиевыми часами, тогда как приемники – куда менее точными кварцевыми. Поэтому для проверки времени осуществляется контакт с дополнительным (четвертым) спутником.


Но ошибаться могут и цезиевые часы, поэтому их сверяют с размещенными на земле водородными часами. Для каждого спутника в центре управления системой навигации индивидуально рассчитывается поправка времени, которая впоследствии вместе с точным временем отправляется приемнику.

Еще одним важным компонентом системы спутниковой навигации является альманах, который представляет собой таблицу параметров орбит спутников на месяц вперед. Альманах, как и поправка времени, рассчитываются в центре управления.


Передают спутники и индивидуальные данные эфемерид, на основе которых вычисляются отклонения орбиты. А учитывая что скорость света нигде кроме вакуума не постоянна, в обязательном порядке учитывается задержка сигнала в ионосфере.

Передача данных в сети GPS ведется строго на двух частотах: 1575,42 МГц и 1224,60 МГц. Разные спутники транслируют сигнал на одной и той же частоте, но используют кодовое разделение каналов CDMA. То есть сигнал спутника – всего лишь шум, раскодировать который можно только при наличии соответствующего PRN-кода.


Вышеописанный подход позволяет обеспечить высокую помехоустойчивость и использовать узкий частотный диапазон. Тем нее менее, иногда GPS-приемникам все равно приходится подолгу искать спутники, что вызвано рядом причин.

Во-первых, приемник изначально не знает, где находится спутник, удаляется он или приближается и какое смещение частоты его сигнала. Во-вторых, контакт со спутником считается удачным только тогда, когда от него получен полный набор информации. Скорость же передачи данных в сети GPS редко превышает показатель 50 бит/с. А стоит сигналу оборваться из-за радиопомех, как поиск начинается заново.


Будущее спутниковой навигации

Сейчас GPS и ГЛОНАСС широко применяются в мирных целях и, по сути, являются взаимозаменяемыми. Новейшие навигационные чипы поддерживают оба стандарта связи и подключаются к тем спутникам, которые находят первыми.

Американская GPS и российская ГЛОНАСС – далеко не единственные в мире системы спутниковой навигации. К примеру, Китай, Индия и Япония начали развертывать собственные ССН под названием BeiDou, IRNSS и QZSS соответственно, которые будут действовать только внутри своих стран, а потому потребуют сравнительно малого количества спутников.

Но самый большой интерес, пожалуй, вызывает проект Galileo, который разрабатывается Европейским союзом и должен быть запущен на полную мощность до 2020 года. Изначально Galileo задумывалась как сугубо европейская сеть, но о своем желании поучаствовать в ее создании уже заявили страны Ближнего Востока и Южной Америки. Так что в скором времени на рынке глобальных ССН может появиться «третья сила». Если и эта система будет совместима с существующими, а скорей всего так и будет, потребители только выиграют – скорость поиска спутников и точность позиционирования должны вырости.

Принцип работы спутниковых систем навигации основан на измерении расстояния от антенны на объекте (координаты которого необходимо получить) до спутников, положение которых известно с большой точностью. Измерение расстояния происходит при помощи сравнения времени отправки сигнала (хранящегося в передаваемом пакете с временем приема пакета).

Таблица положений всех спутников называется альманахом. Для выполнения измерений, спутниковый приемник должен содержать в своей памяти эту таблицу. Обычно приёмник сохраняет альманах в памяти со времени последнего выключения и если он не устарел (прошло не более 2-х дней) – мгновенно использует его. Каждый спутник передаёт в своём сигнале весь альманах. Таким образом, зная расстояния до нескольких спутников системы, с помощью обычных математических вычислений и геометрических построений, на основе альманаха, можно вычислить текущее положение объекта в пространстве.

Метод измерения расстояния от спутника до антенны приёмника основан на определённости скорости распространения радиоволн. Для осуществления возможности измерения времени распространения радиосигнала каждый спутник навигационной системы излучает сигналы точного времени, в составе своего сигнала используя точно синхронизированные с системным временем атомные часы. При работе спутникового приёмника его часы синхронизируются с системным временем и при дальнейшем приёме сигналов вычисляется задержка между временем излучения, содержащимся в самом сигнале, и временем приёма сигнала. Располагая этой информацией, навигационный приёмник вычисляет координаты антенны. Дополнительно накапливая и обрабатывая эти данные за определённый промежуток времени, становится возможным вычислить такие параметры движения, как скорость (текущую, максимальную, среднюю), пройденный путь и т. Д .

Рисунок 2 – Принцип работы спутниковых систем навигации

Технические параметры систем GPS и ГЛОНАСС

В настоящее время работают или готовятся к развёртыванию системы спутниковой навигации, представленные в табл. 1.

К основным системам спутниковой навигации, как наиболее развернутым, относятся системы GPS и ГЛОНАСС. Обе системы имеют двойное назначение – военное и гражданское, поэтому излучают два вида сигналов: один с пониженной точностью определения координат (~100 м) для гражданского применения и другой высокой точности (~10-15 м и точнее) для военного применения. Для ограничения доступа к точной навигационной информации вводят специальные помехи, которые могут быть учтены после получения ключей от соответствующего военного ведомства (США для GPSи России для ГЛОНАСС). В настоящее время эти помехи отменены, и точный сигнал доступен гражданским приёмникам, однако в случае соответствующего решения государственных органов стран-владельцев военный код может быть снова заблокирован (в системе NAVSTAR это ограничение было отменено только в мае 2000 года и в любой момент может быть восстановлено).



Спутники GPS располагаются в шести плоскостях на высоте примерно 20180 км. Спутники ГЛОНАСС (шифр «Ураган») находятся в трёх плоскостях на высоте примерно 19100 км. Номинальное количество спутников в обеих системах – 24 . Группировка GPS полностью укомплектована в апреле 1994-го и с тех пор поддерживается, группировка ГЛОНАСС была полностью развёрнута в декабре 1995-го, но с тех пор значительно деградировала. В настоящий момент идёт её активное восстановление. До конца 2009 года планируется запуск необходимого до штатного функционирования навигационных спутников.

Таблица 1 – Системы спутниковой навигации

Название Страна Этап Использование за пределами страны
NAVSTAR GPS США Эксплуатация да
ГЛОНАСС Россия Повторное развёртывание спутниковой группировки да
Бэйдоу Китай Разработка нет
Galileo Европейская система Создание спутниковой группировки да
IRNSS Индия Разработка нет

Рисунок 3 – Космический сегмент спутников ГЛОНАСС и GPS

Обе системы используют сигналы на основе так называемых «псевдошумовых последовательностей», применение которых придаёт им высокую помехозащищённость и надёжность при невысокой мощности излучения передатчиков.

В соответствии с назначением, в каждой системе есть две базовые частоты - L1 (стандартной точности) и L2 (высокой точности). Сигнал в L1 доступен всем пользователям, сигнал в L2 – только военным (то есть, не может быть расшифрован без специального секретного ключа).

Данные, передаваемые со спутника, помимо основной информации, содержат также вспомогательную, необходимую для непрерывной работы приёмного оборудования. В состав дополнительной информации входит полный альманах всей спутниковой группировки, передаваемый последовательно в течение нескольких минут. Из этого можно сделать вывод, что старт приёмного устройства может быть достаточно быстрым, если он содержит актуальный альманах (порядка одной минуты) - это называется «тёплый старт», но может занять и до 15-ти минут, если приёмник вынужден получать полный альманах – так называемый «холодный старт». «Холодном старт» обычно происходит при первом включении приёмника, либо если приемник долгое время (более 2-х дней) не использовался.

Сегодня мы поговорим о том, что такое GPS, как работает эта система. Уделим внимание развитию данной технологии, ее функциональным особенностям. Также обсудим, какую роль в работе системы играют интерактивные карты.

История появления GPS

История появления глобальной системы позиционирования, или определения координат, началась в США еще в далеких 50-х годах при запуске первого советского спутника в космос. Бригада американских ученых, следивших за запуском, заметила, что при отдалении спутник равномерно меняет свою частоту сигнала. После глубокого анализа данных они пришли к выводу, что при помощи спутника, если говорить более подробно, то его расположения и издаваемого сигнала, можно точно определить нахождение и скорость передвижения человека на земле, как и наоборот, скорость и нахождение спутника на орбите при определении точных координат человека. К концу семидесятых годов Минобороны США запустило систему GPS в своих целях, а еще через несколько лет она стала доступна для гражданского применения. Система GPS как работает сейчас? Точно так, как и работала в то время, по тем же принципам и основам.

Сеть спутников

Более двадцати четырех спутников, находящихся на околоземной орбите, передают радиосигналы привязки. Количество спутников варьируется, но на орбите всегда находится нужное их число для обеспечения бесперебойной работы, плюс некоторые из них есть в запасе, чтобы в случае поломки первых принять их функции на себя. Так как срок службы каждого из них приблизительно около 10 лет, производится запуск новых, модернизированных версий. Вращение спутников происходит по шести орбитам вокруг Земли на высоте менее 20 тысяч км, оно образует взаимосвязанную сеть, которой управляют станции GPS. Находятся последние на тропических островах и связаны с основным координационным центром в США.

Как работает GPS-навигатор?

Благодаря этой сети можно узнать местонахождение при помощи вычисления задержки прохождения сигнала от спутников, и при помощи этой информации определить координаты. Система GPS как работает сейчас? Как и любая сеть навигации в пространстве - она совершенно бесплатна. Она с высокой эффективностью работает при любых погодных условиях и в любое время суток. Единственная покупка, которая должна у вас быть, это сам GPS-навигатор или устройство, которое поддерживает функции GPS. Собственно, принцип работы навигатора строится на давно используемой простой схеме навигации: если точно знаете место, где находится маркерный объект, наиболее подходящий на роль ориентира, и расстояние от него до вас, нарисуйте окружность, на которой точкой обозначьте ваше месторасположение. Если радиус окружности велик, то замените ее прямой линией. Проведите несколько таких полос от возможного вашего расположения в сторону маркеров, точка пересечения прямых обозначит ваши координаты на карте. Вышеупомянутые спутники в таком случае как раз и играют роль этих маркерных объектов с расстоянием от вашего месторасположения около 18 тысяч км. Хотя вращение их по орбите и происходит с огромной скоростью, местоположение постоянно отслеживается. В каждом навигаторе установлен GPS-приемник, который запрограммирован на нужную частоту и находится в прямом взаимодействии со спутником. В каждом радиосигнале содержится определенное количество закодированной информации, которая включает в себя ведомости о техническом состоянии спутника, местонахождении его на орбите Земли и часовом поясе (точное время). К слову, информация о точном времени и является наиболее нужной для получения данных о ваших координатах: происходящее вычисление отрезка времени между отдачей и приемом радиосигнала умножается на скорость самой радиоволны и путем недолговременных подсчетов рассчитывается расстояние между вашим навигационным прибором и спутником на орбите.


Сложности синхронизации

Исходя из этого принципа навигации, можно предположить, что для точного определения ваших координат могут понадобиться всего два спутника, на основе сигналов которых легко будет найти точку пересечения, и в итоге — место, где вы находитесь. Но, к сожалению, технические причины требуют применения еще одного спутника как маркера. Главная проблема заключается в часах GPS-приемника, что не позволяет провести достаточную синхронизацию со спутниками. Причиной этому является разница в отображении времени (на вашем навигаторе и в космосе). На спутниках присутствуют дорогие высококачественные часы на атомной основе, что позволяет им вести подсчет времени с предельной точностью, тогда как на обычных приемниках такие хронометры применить попросту невозможно, так как габариты, стоимость, сложность в эксплуатации не позволили бы применять их повсюду. Даже малая ошибка в 0.001 секунды может сместить координаты более чем на 200 км в сторону!


Третий маркер

Так что разработчики решили оставить обычную технологию кварцевых часов в GPS-навигаторах и пойти по другому пути, если говорить точнее - использовать вместо двух ориентиров-спутников — три, соответственно, столько же линий для последующего пересечения. Решение проблемы строится на гениально простом выходе: при пересечении всех линий с трех обозначенных маркеров, даже при возможных неточностях, создается зона в форме треугольника, за центр которого берется его середина - ваше расположение. Также это позволяет выявить отличие во времени приемника и всех трех спутников (для которых отличие будет одинаковым), что позволяет скорректировать пересечение линий ровно в центре, проще говоря — это определяет ваши координаты GPS.


Одна частота

Следует также заметить, что все спутники посылают на ваше устройство информацию на одной частоте, и это довольно необычно. Как работает GPS-навигатор и как воспринимает всю информацию корректно, если все спутники беспрерывно и одновременно посылают на него информацию? Все довольно-таки просто. Передатчики на спутнике для определения себя посылают в радиосигнале еще и стандартную информацию, в которой находится зашифрованный код. Он сообщает максимум характеристик спутника и заносится в базу данных вашего устройства, что потом позволяет сверять данные со спутника с базой данных навигатора. Даже при большом количестве спутников в зоне досягаемости очень быстро и легко их можно определить. Все это упрощает всю схему и позволяет использовать в GPS-навигаторах меньшие по размеру и более слабые антенны приема, что удешевляет и уменьшает дизайн и габариты устройств.

GPS-карты

Карты GPS загружаются на ваше устройство отдельно, так как вы сами влияете на выбор местности, по которой хотите передвигаться. Система всего лишь устанавливает ваши координаты на планете, а уже функцией карт является воссоздание на экране графической версии, на которую наносятся координаты, что и позволяет вам ориентироваться на местности. GPS как работает в данном случае? Бесплатно, это так и продолжает оставаться в таком статусе, карты в некоторых интернет-магазинах (и не только) все же платные. Зачастую для прибора с GPS-навигатором создаются отдельные приложения для работы с картами: как платные, так и бесплатные. Разновидность карт приятно удивляет и позволяет настроить дорогу из точки A в точку Б максимально информативно и со всеми удобствами: какие достопримечательности вы будете проезжать, кратчайший путь до пункта назначения, голосовой помощник, указывающий направление и другие.


Дополнительное GPS-оборудование

Применяется система GPS не только для указания вам нужного пути. Она позволяет производить слежку за объектом, на котором может находиться так называемый маячок, или GPS-трекер. Состоит он из самого приемника сигналов и передатчика на основе gsm, 3gp или иных протоколов связи для передачи информации о расположении объекта в сервисные центры, осуществляющие контроль. Применяются они во многих отраслях: охранной, медицинской, страховой, транспортной и многих других. Также существуют автомобильные трекеры, которые подключаются исключительно к автомобилю.


Путешествия без проблем

С каждым днем значения карты и бессменного компаса уходят все дальше в прошлое. Современные технологии позволяют человеку проложить дорогу для своего странствия с минимальными потерями времени, усилий и средств, при этом увидеть наиболее захватывающие и интересные места. То, что было фантастикой около столетия назад, сегодня стало реальностью, и воспользоваться этим может практически каждый: от военных, моряков и пилотов самолетов до туристов и курьеров. Сейчас большую популярность набирает и использование этих систем для коммерческой, развлекательной, рекламной отраслей, где каждый предприниматель может указать себя на глобальной карте мира, и его будет совсем нетрудно найти. Надеемся, что эта статья помогла всем, кто интересуется тем, GPS - как работает, по какому принципу происходит определение координат, какие его сильные и слабые стороны.

Спутниковая навигация GPS давно уже является стандартом для создания систем позиционирования и активно применяется в различных трекерах и навигаторах. В проектах Arduino GPS интегрируется с помощью различных модулей, не требующих знания теоретических основ. Но настоящему инженеру должно быть интересно разобраться со принципом и схемой работы GPS, чтобы лучше понимать возможности и ограничения этой технологии.

Схема работы GPS

GPS – это спутниковая навигационная система, разработанная Министерством обороны США, которая определяет точные координаты и время. Работает в любой точке Земли в любых погодных условиях. GPS состоит из трех частей – спутников, станций на Земле и приемников сигнала.

Идея создания спутниковой навигационной системы зародилась еще в 50-е годы прошлого столетия. Американская группа ученых, наблюдающая за запуском советских спутников, заметила, что при приближении спутника частота сигнала увеличивается и уменьшается при его отдалении. Это позволило понять, что возможно измерить положение и скорость спутника, зная свои координаты на Земле, и наоборот. Огромную роль в развитии навигационной системы сыграл запуск спутников на низкую околоземную орбиту. А в 1973 году была создана программа «DNSS» («NavStar»), по этой программе спутники запускались на среднюю околоземную орбиту. Название GPS программа получила в том же 1973 году.

Система GPS на данный момент используется не только в военной области, но и в гражданских целях. Сфер применения GPS много:

  • Мобильная связь;
  • Тектоника плит – происходит слежение за колебаниями плит;
  • Определение сейсмической активности;
  • Спутниковое отслеживание транспорта – можно проводить мониторинг за положением, скоростью транспорта и контролировать их движение;
  • Геодезия – определение точных границ земельных участков;
  • Картография;
  • Навигация;
  • Игры, геотегинт и прочие развлекательные области.

Важнейшим недостатком системы можно считать невозможность получения сигнала при определенных условиях. Рабочие частоты GPS лежат в дециметровом диапазоне волн. Это приводит к тому, что уровень сигнала может снизиться из-за высокой облачности, плотной листвы деревьев. Радиоисточники, глушилки, а в редких случаях даже магнитные бури также могут мешать нормальной передаче сигнала. Точность определения данных будет ухудшаться в приполярных районах, так как спутники невысоко поднимаются над Землей.

Навигация без GPS

Основным конкурентом GPS является российская система ГЛОНАСС (глобальная навигационная спутниковая система). Свою полноценную работу система начала с 2010 года, попытки активно использовать ее предпринимались с 1995 года. Существует несколько отличий между двумя системами:

  • Разные кодировки – американцы используют CDMA, для российской системы используется FDMA;
  • Разные габариты устройств – ГЛОНАСС использует более сложную модель, поэтому повышается энергопотребление и размеры устройств;
  • Расстановка и движение спутников на орбите – российская система обеспечивает более широкий охват территории и более точное определение координат и времени.
  • Срок службы спутников – американские спутники делаются более качественными, поэтому они служат дольше.

Помимо ГЛОНАСС и GPS существуют и другие менее популярные навигационные системы – европейский Galileo и китайский Beidou.

Описание GPS

Принцип работы GPS

Работает система GPS следующим образом – приемник сигнала измеряет задержку распространения сигнала от спутника до приемника. Из полученного сигнала приемник получает данные о местонахождении спутника. Для определения расстояния от спутника до приемника задержка сигнала умножается на скорость света.

С точки зрения геометрии работу навигационной системы можно проиллюстрировать так: несколько сфер, в середине которых находятся спутники, пересекаются и в них находится пользователь. Радиус каждой из сфер соответственно равен расстоянию до этого видимого спутника. Сигналы от трех спутников позволяют получить данные о широте и долготе, четвертый спутник дает информацию о высоте объекта над поверхностью. Полученные значения можно свести в систему уравнений, из которых можно найти координату пользователя. Таким образом, для получения точного местоположения необходимо провести 4 измерения дальностей до спутника (если исключить неправдоподобные результаты, достаточно трех измерений).

Поправки в полученные уравнения вносит расхождение между расчетным и фактическим положением спутника. Погрешность, которая возникает в результате этого, называется эфемеридной и составляет от 1 до 5 метров. Также свой вклад вносят интерференция, атмосферное давление, влажность, температура, влияние ионосферы и атмосферы. Суммарно совокупность всех ошибок может довести погрешность до 100 метров. Некоторые ошибки можно устранить математически.

Чтобы уменьшить все погрешности, используют дифференциальный режим GPS. В нем приемник получает по радиоканалу все необходимые поправки к координатам от базовой станции. Итоговая точность измерения достигает 1-5 метров. При дифференциальном режиме существует 2 метода корректировки полученных данных – это коррекция самих координат и коррекция навигационных параметров. Первый метод использовать неудобно, так как все пользователи должны работать по одним и тем же спутникам. Во втором случае значительно увеличивается сложность самой аппаратуры для определения местоположения.

Существует новый класс систем, который увеличивает точность измерения до 1 см. Огромное влияние на точность оказывает угол между направлениями на спутники. При большом угле местоположение будет определяться с большей точностью.

Точность измерения может быть искусственно снижена Министерством обороны США. Для этого на устройствах навигации устанавливается специальный режим S/A – ограниченный доступ. Режим разработан в военных целях, чтобы не дать противнику преимущества в определении точных координат. С мая 2000 года режим ограниченного доступа был отменен.

Все источники ошибок можно разделить на несколько групп:

  • Погрешность в вычислении орбит;
  • Ошибки, связанные с приемником;
  • Ошибки, связанные с многократным отражением сигнала от препятствий;
  • Ионосфера, тропосферные задержки сигнала;
  • Геометрия расположения спутников.

Основные характеристики

В систему GPS входит 24 искусственных спутника Земли, сеть наземных станций слежения и навигационные приемники. Станции наблюдения требуются для определения и контроля параметров орбит, вычисления баллистических характеристик, регулировка отклонения от траекторий движения, контроль аппаратуры на бору космических аппаратов.

Характеристики навигационных систем GPS :

  • Количество спутников – 26, 21 основной, 5 запасных;
  • Количество орбитальных плоскостей – 6;
  • Высота орбиты – 20000 км;
  • Срок эксплуатации спутников – 7,5 лет;
  • Рабочие частоты – L1=1575,42 МГц; L2=12275,6МГц, мощность 50 Вт и 8 Вт соответственно;
  • Надежность навигационного определения – 95%.

Навигационные приемники бывают нескольких типов – портативные, стационарные и авиационные. Приемники также характеризуются рядом параметров:

  • Количество каналов – в современных приемников используется от 12 до 20 каналов;
  • Тип антенны;
  • Наличие картографической поддержки;
  • Тип дисплея;
  • Дополнительные функции;
  • Различные технические характеристики – материалы, прочность, защита от влаги, чувствительность, объем памяти и другие.

Принцип действия самого навигатора – в первую очередь устройство пытается связаться с навигационным спутником. Как только связь будет установлена, происходит передача альманаха, то есть информации об орбитах спутников, находящихся в рамках одной навигационной системы. Связи с одним только спутником недостаточно для получения точного местоположения, поэтому оставшиеся спутники передают навигатору свои эфемериды, необходимые для определения отклонений, коэффициентов возмущения и других параметров.

Холодный, теплый и горячий старт GPS навигатора

Включив навигатор впервые или после долгого перерыва, начинается долгое ожидание для получения данных. Долгое время ожидания связано с тем, что в памяти навигатора отсутствуют либо устарели альманах и эфемериды, поэтому устройство должно выполнить ряд действий по получению или обновлению данных. Время ожидания, или так называемое время холодного старта, зависит от различных показателей – качество приемника, состояние атмосферы, шумы, количество спутников в зоне видимости.

Чтобы начать свою работу, навигатор должен:

  • Найти спутник и установить с ним связь;
  • Получить альманах и сохранить его в памяти;
  • Получить эфемериды от спутника и сохранить их;
  • Найти еще три спутника и установить с ними связь, получить от них эфемериды;
  • Вычислить координаты при помощи эфемерид и местоположения спутников.

Только пройдя весь этот цикл, устройство начнет работать. Такой запуск и называется холодным стартом .

Горячий старт значительно отличается от холодного. В памяти навигатора уже имеется актуальный на данный момент альманах и эфемериды. Данные для альманаха действительны в течение 30 дней, эфемерид – в течение 30 минут. Из этого следует, что устройство выключалось на непродолжительное время. При горячем старте алгоритм будет проще – устройство устанавливает связь со спутником, при необходимости обновляет эфемериды и вычисляет местоположение.

Существует теплый старт – в этом случае альманах является актуальным, а эфемериды нужно обновить. Времени на это затрачивается немного больше, чем на горячий старт, но значительно меньше, чем на холодный.

Ограничения на покупку и использование самодельных модулей GPS

Российское законодательство требует от производителей уменьшать точность определения приемников. Работать с незагрубленной точностью может производиться только при наличии у пользователя специализированной лицензии.

Под запретом в Российской Федерации находятся специальные технические средства, предназначенные для негласного получения информации (СТС НПИ). К таковым относятся GPS трекеры, которые используются для негласного контроля над перемещением транспорта и прочих объектов. Основной признак незаконного технического средства – его скрытность. Поэтому перед приобретением устройства нужно внимательно изучить его характеристики, внешний вид, на наличие скрытых функций, а также просмотреть необходимые сертификаты соответствия.

Также важно, в каком виде продается устройство. В разобранном виде прибор может не относиться к СТС НПИ. Но при сборе готовое устройство уже может относиться к запрещенным.

Спутниковые системы навигации – комплексные электронно-технические системы, состоящие из совокупности наземного (приемники) и космического оборудования (спутники). Они предназначены для определения местоположения (географических координат и высоты), а также параметров движения (скорости, направления движения и т. д.) для наземных, водных и воздушных объектов. Для краткого обозначения этих систем пользуются или аббревиатурой GNSS (от англ. Global Navigation Satellites System – глобальная навигационная спутниковая система) или NAVSTAR (от англ. NAVigation Satellites providing Time And Range – измерение времени и расстояния от навигационных спутников).

Принципы работы спутниковых систем навигации , если не обращать внимания на их техническую реализацию, достаточно просты. На околоземную орбиту запущены специальные навигационные спутники. Работа приемника GNSS заключается в том, чтобы найти четыре или более из этих спутников, выяснить расстояние до каждого и использовать эту информацию для вычисления собственного месторасположения.

Поскольку скорость распространения радиосигналов постоянна и равна скорости света, расстояние до спутников определяется по задержке времени приема сообщения GNSS-приемником относительно времени отправки сообщения с борта спутника. GNSS-приемник, зная взаимное расположение спутников, вычисляет свои координаты по законам геометрии, т. е. все работает по принципу простого школьного уравнения, когда, зная взаимное расположение трех точек, ищут положение четвертой, при условии, что известно расстояние от четвертой точки до каждой из трех.

Таким образом, для определения двух координат (широта и долгота) GNSS-приемнику нужно знать расстояние до трех спутников и время GNSS-системы. Для определения координат и высоты приемника, используются сигналы как минимум с четырех спутников.Для того чтобы произвести эти измерения, приемнику и спутнику необходимы часы, которые должны быть синхронизированы до наносекунды. Разработчики GNSS нашли умное и эффективное решение этой проблемы. Каждый спутник содержит дорогие атомные часы, но сам приемник использует обычные кварцевые, которые он постоянно переустанавливает по сигналам со спутников.

После того как приемник произведет расчеты, он сообщит Вам широту, долготу и высоту своего местонахождения. Для того чтобы сделать навигацию более удобной для пользователей, большинство приемников привязывают эти данные к картам, хранящимся в их памяти.



В настоящее время в мире реализовано несколько спутниковых систем навигации, которые работают по одним и тем же изложенным выше принципам.

GPS (от англ. Global Positioning System – глобальная система позиционирования)разработана, реализована и эксплуатируется Министерством обороны США. Первый тестовый спутник выведен на орбиту 14 июля 1974 г. В 1991 г. на орбиту выведено 24 спутника, которые обеспечили полное покрытие земного шара. Сейчас на орбите 30 спутников. Каждый из них вращается вокруг планеты на высоте примерно 20 000 км, делая два полных оборота каждый день. Орбиты расположены так, что в любое время и в любом месте на Земле есть по крайней мере четыре спутника, «видимых» в небе.

GPS была разработана Министерством обороны США для нужд военных. Ее можно использовать для точного наведения ракет на неподвижные и подвижные объекты в воздухе и на земле.

Система работает одновременно в двух режимах – военном и гражданском. Для военных армии США и их союзников, погрешность определения координат с помощью GNSS составляет несколько сантиметров. Для всех остальных точность составляет около 5 м, в зависимости от условий приема. К сожалению, точность навигации сильно зависит от открытости пространства, от высоты используемых спутников над горизонтом. Невысокое наклонение орбит GPS серьезно ухудшает точность в приполярных районах Земли, так как спутники GPS невысоко поднимаются над горизонтом.



ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система) – советская и российская спутниковая система навигации, разработана по заказу Министерства обороны СССР. Основой системы являются 24 спутника, движущихся над поверхностью Земли в трех орбитальных плоскостях с наклоном 64,8° на высоте 19 100 км. В настоящее время развитием проекта ГЛОНАСС занимается Федеральное космическое агентство (Роскосмос) и ОАО «Российские космические системы».

Первый спутник ГЛОНАСС был выведен Советским Союзом на орбиту 12 октября 1982 г. 24 сентября 1993 г. система была официально принята в эксплуатацию с орбитальной группировкой из 12 спутников. В декабре 1995 г. спутниковая группировка была развернута до штатного состава – 24 спутника.

Галилео (Galileo ) – совместный проект спутниковой системы навигации Европейского союза и Европейского космического агентства. Система предназначена для решения навигационных задач для любых подвижных объектов с точностью менее 1 м. Ожидается, что «Галилео» войдет в строй в 2014–2016 гг., когда на орбиту будут выведены все 30 запла-нированных спутников (27 операционных и 3 резервных). Система Галилео не контролируется национальными военными ведомствами.

Бэйдоу – развертываемая в настоящее время Китаем подсистема GNSS предназначенная для использования только в этой стране. Особенность – небольшое количество спутников, находящихся на геостационарной орбите.

IRNSS – индийская навигационная спутниковая система, в состоянии разработки. Предполагается для использования только в этой стране. Первый спутник был запущен в 2008 г.

В ближайшей перспективе будут одновременно работать три глобальных навигационных спутниковых системы – GPS, ГЛОНАСС и Галилео. Одним из основных принципов развития этих систем является отсутствие прямой платы за пользование их услугами. Кроме этого, развитию систем способствует направленность на международное сотрудничество в области их совместимости и взаимодополняемости и как следствие – использование одной системы в комбинации с другими спутниковыми или наземными радионавигационными системами для повышения точности и надежности навигационных определений.

Несмотря на то, что изначально проекты GPS и ГЛОНАСС были направлены на военные цели, сегодня они все чаще используются в гражданских целях.

В настоящее время наиболее развернутой и развитой с точки зрения распространенности технических средств является система GPS. В связи этим ее название часто используется как нарицательное при любом разговоре о спутниковых навигационных системах.

Применение спутниковых навигационных систем. Независимо от класса и решаемых задач в основе любой навигационной системы лежит электронная картография. Спутниковые навигаторы не только сообщат координаты Вашего местоположения, но и свяжут его с электронной картой. Картографические GNSS системы можно использовать в любых приложениях требующих точной временной привязки и привязки положений с другой атрибутивной информацией.

Потребителям предлагаются различные устройства и программные продукты, позволяющие видеть свое местонахождение на электронной карте: имеющие возможность прокладывать маршруты с учетом дорожных знаков, разрешенных поворотов и даже пробок; искать на карте конкретные дома и улицы, достопримечательности, кафе, больницы, автозаправки и прочие объекты инфраструктуры. GNSS-приемники продают во многих магазинах, торгующих электроникой, их встраивают в мобильные телефоны, смартфоны, КПК.

Наиболее распространенными являются приемники GNSS для индивидуального использования водителями автомобильного транспорта. Они имеют размер карманного калькулятора с клавиатурой и жидкокристаллическим дисплеем. Приемник GNSS не только укажет Ваше место на карте, но также способен отслеживать по карте Ваши перемещения. Если Вы оставите приемник включенным, он может находиться в постоянной связи со спутниками GNSS, чтобы отслеживать изменение Вашего положения. С помощью этой информации и встроенных часов приемник может дать Вам следующие сведения:

· местонахождение;

· наиболее короткий и удобный путь до пункта назначения;

· как далеко Вы уже уехали;

· как долго Вы путешествуете;

· скорость движения (в настоящий момент, максимальная, минимальная, средняя);

· время в пути (прошедшее и сколько еще потребуется).

Автомобильные GNSS-приемники – это, по сути, электронные лоцманы, дающие указания водителю синтезированным голосом, заранее сообщая обо всех поворотах, стоянках и прочих особенностях данного маршрута. В большом городе иногда сложно сориентироваться даже тем, кто прожил там всю жизнь. Что уж говорить о приезжих. Да и за пределами города несложно потеряться. Так что GNSS-навигатор – очень полезная и иногда даже необходимая вещь. Особенно если речь идет о начинающем водителе или человеке, который первый раз оказался в незнакомом городе.

В последнее время получает широкое распространение весьма удачная интеграция GNSS, радиосвязи и компьютерной техники – диспетчерские навигационные системы, предназначенные для централизованного контроля за передвижением автомобилей. В этих системах каждый автомобиль оснащен GNSS-приемником и радиосвязным оборудованием для контакта с диспетчерским пунктом. На экране монитора диспетчера формируется электронная цифровая карта территории, которая обслуживается транспортными средствами. Закодированная информация о координатах и скорости движения автомобилей, получаемая по радиоканалу, позволяет отобразить их текущее положение на этой карте. Параллельно этой информации по радиолинии могут автоматически передаваться сведения от самых разных датчиков, установленных на автомобиле: например, о несанкционированном вскрытии контейнеров, о наличии топлива, об остановках, ДТП, авариях и т. п.

Такие диспетчерские GNSS-системы могут успешно использоваться в торговых и транспортных компаниях, а также в поисковых и аварийных службах, инкассации банков, в МВД и т. п. Элементы таких систем могут устанавливаться в автомобилях скрытно. В случае попытки угона устройство автоматически сообщит координаты автомобиля, по которым соответствующая служба сможет его найти.

Системы спутникового мониторинга транспорта решают следующие задачи.

1. Контроль за целевым использованием транспорта. Проверяется действительный маршрут, пройденный транспортным средством, точки остановок, скоростной режим, расход топлива, время работы механизмов.

2. Контроль соблюдения графика движения. На карте определяются контрольные зоны. Проверяется время пересечения границ зон.

3. Сбор статистки и оптимизация маршрутов. Проанализировав пройденные маршруты на предмет скоростного режима и расхода топлива, диспетчер может разработать новые, более эффективные.

4. Обеспечение безопасности. Знание местоположения позволяет быстро найти угнанное либо попавшее в беду транспортное средство. Автомобили специального назначения, такси могут оборудоваться скрытой кнопкой, нажатие на которую отсылает тревожный сигнал в диспетчерский центр.

5. Помощь водителю в выборе маршрута на местности. Зная местонахождение транспортного средства, диспетчер может посоветовать водителю маршрут движения в незнакомой местности.

Система спутникового мониторинга транспорта включает следующие компоненты:

· транспортное средство, оборудованное GPS- или ГЛОНАСС-контроллером или трекером, который получает данные от спутников и передает их на серверный центр мониторинга посредством GSM, CDMA, Wi-Fi, Bluetooth или реже космической и УКВ связи;

· серверный центр с программным обеспечением для приема, хранения, обработки и анализа данных;

· компьютер диспетчера, ведущего мониторинг автомобилей.

Большинство GNSS-контроллеров и трекеров имеют схожие функциональные возможности:

· вычисление собственное местоположение, скорость и направление движения на основании сигналов спутников систем глобального позиционирования GPS;

· подключение внешних датчиков через аналоговые или цифровые входы;

· считывание данных с бортового оборудования;

· хранение некоторого объема данных во внутренней памяти на период отсутствия связи;

· передача полученных данных на серверный центр, где происходит их обработка.

Для получения дополнительной информации на транспортное средство устанавливаются дополнительные датчики, подключаемые к GPS- или ГЛОНАСС-контроллеру, например:

· датчик расхода топлива;

· датчик нагрузки на оси транспортного средства;

· датчик уровня топлива в баке;

· датчик температуры в рефрижераторе;

· датчики, фиксирующие факт работы или простоя спецмеханизмов (поворот стрелы крана, работы бетоносмесителя), факт открывания двери или капота, факт наличия пассажира (такси).

Использование систем спутникового мониторинга повышает качество и эффективность работы корпоративного транспорта, и в среднем на 20–25 % снижают расходы на топливо и содержание автопарка. Примерами использования таких диспетчерских систем могут похвастаться уже десятки городов России.

29 января 2009 г. было объявлено, что первым городом страны, где общественный транспорт в массовом порядке оснащен системой спутникового мониторинга на базе ГЛОНАСС, стал Сочи. На тот момент ГЛОНАСС-оборудование было установлено на 250 сочинских автобусах.

С недавних пор за всеми передвижениями автомобилей скорой помощи в Благовещенске следят диспетчеры в специальном сервисе, который был создан для сокращения времени прибытия к больному. В оперативном отделе станции рабочие места оборудованы электронной картой Благовещенска, и теперь местонахождение бригад скорой помощи, их маршрут, параметры скорости и времени движения диспетчер без труда может отслеживать по монитору.

Пермское отделение Свердловской железной дороги начало подготовку к реализации пилотного проекта по внедрению спутниковой системы контроля ITARUS-АТС. Система призвана осуществлять контроль из центра оперативного управления за скоростью и местонахождением поездов. Кроме того, она проводит непрерывную диагностику подвижного состава, при необходимости автоматически отдает команды на экстренные остановки или временное ограничение скорости. Ожидается, что внедрение системы повысит пропускную способность линий и позволит сократить расходы на эксплуатацию и техническое обслуживание железнодорожной инфраструктуры. По итогам опытной эксплуатации в Пермском крае планируется распространить данную технологию на сеть российских железных дорог.

Развитие систем GNSS-диспетчеризации осуществляется в рамках постановления Правительства РФ от 03.08.1999 г. № 896 «Об использовании в Российской Федерации глобальных навигационных спутниковых систем на транспорте и в геодезии».

Рассмотрим другие сферы применения спутниковых навигационных систем.

Специалисты, работающие в области природных ресурсов – геологи, географы, лесники и биологи используют GNSS картографические системы для записи положений и дополнительной информации об объектах. Например, лесники в качестве дополнительной информации могут регистрировать возраст, состояние, количество и тип леса. Они могут также проводить съемку территорий, подлежащих вырубке или посадке. Биологи имеют возможность регистрировать ареалы расселения диких животных, маршруты их миграций, численность популяций и другую информацию.

GNSS оказывается крайне эффективным в городском хозяйстве при съемке канализационных, газовых и водных трубопроводов, а также электрических и телефонных линий. Такие объекты, как крышки колодцев и пожарные гидранты, картографируются как точки с соответствующей атрибутивной информацией. Кроме того, с помощью GNSS можно выполнять съемку земельных участков, участков проведения строительных работ, объектов улиц и заводов.

GNSS картографические системы помогают описывать особенности участков полей, находящихся в интенсивном сельскохозяйственном применении. Вы можете точно связать такие характеристики, как микроклимат, тип почвы, участки поврежденные насекомыми или болезнями, объем собираемой продукции и т. п., с их местоположением. Положение трактора может быть использовано совместно с данными о типе почвы для более экономного расхода удобрений или химических распылителей. Это напрямую снижает стоимость затрат на удобрения и уменьшает загрязнение природных водных источников этими веществами. Кроме того, GNSS можно использовать для картографирования местоположения колодцев и других источников воды; записи размеров озер и их состояния; регистрации ареалов распространения рыбы и диких животных; изменений береговой линии, полевых угодий и климатических зон.

Археологи и историки могут использовать картографические GNSS- системы для навигации и регистрации раскопок и исторических мест.

Навигационные возможности систем могут оказать неоценимую помощь в поиске и спасении людей, в работе милиции и пожарных при экстренном поиске определенного местоположения. Еще в 1990-х гг. появились первые сотовые телефоны с GNSS. В некоторых странах, например США, это используется для оперативного определения местонахождения человека, звонящего по телефону службы спасения. В России в 2010 г. начата реализация аналогичного проекта – Эра-ГЛОНАСС.


ВВЕДЕНИЕ.. 1

1. РЫНОК ИНФОРМАЦИОННЫХ ПРОДУКТОВ.. 1

1.1 ИНФОРМАЦИОННЫЕ РЕСУРСЫ 1

1.2. ИНФОРМАЦИОННЫЕ ПРОДУКТЫ И УСЛУГИ 3

1.3. РЫНОК ИНФОРМАЦИОННЫХ ПРОДУКТОВ И УСЛУГ 5

1.4. СТРУКТУРА ИНФОРМАЦИИ 9

3.2. Как соотносятся информационная технология и информационная система. 10

2. ОПРЕДЕЛЕНЕ И КЛАССИФИКАЦИЯ ИНФОРМАЦИОННЫХ СИСТЕМ... 11

2.1. ОПРЕДЕЛЕНИЕ ИНФОРМАЦИОННОЙ СИСТЕМЫ 11

2.2. КЛАССИФИКАЦИЯ ИНФОРМАЦИОННЫХ СИСТЕМ 15

2.2.1. По признаку структурированности задач. 15

2.2.2. По функциональному признаку и уровням управления. 17

2.2.3. Классификация по характеру обрабатываемой информации. 25

2.2.3. Классификация по целевым функциям. 25

3. Классификация по видам процессов управления. 26

4. Классификация по отраслевому и территориальному признаку. 28

2.2.3. Классификация по степени автоматизации. 28

По степени открытости. 29

По режиму работы.. 30

3. СТРУКТУРА АВТОМАТИЗИРОВАННЫХ ИНФОРМАЦИОННЫХ СИСТЕМ 30

3.1. Состав и назначение структурных элементов АИС. 30

3.2. Технологическое обеспечение АИС.. 33

4. СТАДИИ И ЭТАПЫ ПРОЕКТИРОВАНИЯ АИС И АИТ.. 37

4.1. Общие принципы проектирования. 37

4.5. План постановки задачи. 55

5. Автоматизированное рабочее место – средство автоматизации работы конечного пользователя. 58

6. РАБОТА С ЭЛЕКТРОННЫМИ ДОКУМЕНТАМИ.. 61

6.1. Электронизация делопроизводства. 62

6.2. Выбор программного обеспечения для работы с электронными документами 67

6.3. Классификаторы и кодировки в электронных документах. 80

6.4. Автоматизация идентификации объектов. Штрих-кодирование. 83

7. ИНФОРМАЦИОННО-КУММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ – ОСНОВА РЫНКА ЭЛЕКТРОННЫХ УСЛУГ. 88

7.1. Электронное правительство. 91

7.2. Финансовые услуги через Интернет. 98

7.3. Общественные информационно-коммуникационные интерактивные системы сервисов. 102

7.4. Спутниковые навигационные системы и их использование. 108