Воздушно цинковый аккумулятор. Цинк-воздушные батареи - прорыв в области хранения энергии? Комфорт использования и стабильная работа аппаратов

Подарите себе радость повседневного общения

Международная компания WIDEX с 1956 года занимается производством и продажей слуховых аппаратов. Мы постоянно совершенствуем устройства, чтобы обеспечить оптимальную слышимость и комфорт для наших клиентов.

В ассортименте WIDEX аппараты для слуха представлены пятью категориями:

  • ПРЕМИУМ; БИЗНЕС; КОМФОРТ; БЮДЖЕТ; ЭКОНОМ.

Наши преимущества

Если Вы стали плохо слышать, обратитесь в центр слуха WIDEX – мы поможем решить проблему. Наши специалисты подберут аппараты, максимально соответствующие индивидуальным особенностям. С нашей помощью Вы вернете способность слышать все разнообразие звуков.

Стильный внешний вид

В ассортименте наших центров слуха полный модельный ряд устройств современных форм и цветов: миниатюрные внутриканальные, изящные с ресивером в ухе, классические заушные. Аппараты и аксессуары Widex удостоены международных наград за дизайн – RED DOT Design, Good Design, IF Design Award

Естественное звучание аппаратов

Аппараты Widex делают звуки узнаваемыми, речь разборчивой, шум не раздражающим благодаря работе целого ряда запатентованных технологий Widex – формулы усиления Widex, усилителя речи, подавления тихого фонового шума, компрессии Inter Ear, широкого входного диапазона звуков от 5дБ до 113 дБ, HD-локатора, TruSound Softner и прочих технологий.

Гарантия качества

Работаем по датским стандартам Wideх. Есть полный комплект международных и российских разрешительных документов, они подтверждают надежность и безопасность аппаратов. Регулярно проводим контроль качества и удовлетворенности пользователей.

Стоимость «Все включено»

В стоимость слуховых аппаратов входят все необходимые консультации и обслуживание, в течение срока эксплуатации аппаратов. Персональный специалист ведет пользователя в офисе, по телефону или через онлайн консультацию на сайте.

Минимальные сервисные сроки

Гарантийные сроки ремонта в сертифицированном сервисном центре Widex Москва составляют 2–3 рабочих дня. Еженедельно доставляем аппарты в Москву и обратно за счет нашей компании через региональные центры слуха Widex. Вы можете контролировать статус выполнения работ по сервисному обслуживанию.

Комфорт использования и стабильная работа аппаратов

Индивидуальные корпуса к внутриканальным, внутриушным аппаратам и индивидуальные вкладыши, изготавливаются по 3D технологии CAMISHA Widex. Они комфортно располагаются в ушах пользователя, так как полностью соответствуют слепкам слуховых проходов. Плотное прилегание и оптимальный размер изделий обеспечивают корректную работу систем аппаратов и привлекательный внешний вид устройства.

    Марганцево цинковый элемент. (1) металлической колпачок, (2) графитовый электрод («+»), (3) цинковый стакан (« »), (4) оксид марганца, (5) электролит, (6) металлический контакт. Марганцево цинковый элемент,… … Википедия

    РЦ 53М (1989 год) Ртутно цинковый элемент («тип РЦ») гальванический элемент в котором анодом является цинк … Википедия

    Батарея «Oxyride» Элементы питания Oxyride™ это торговая марка для одноразовых (неперезаряжаемых) элементов питания, разработанных фирмой Panasonic. Они разработаны специально для устройств с большим потреблением электроэнер … Википедия

    Нормальный элемент Вестона, ртутно кадмиевый элемент гальванический элемент, ЭДС которого весьма стабильна во времени и воспроизводима от экземпляра к экземпляру. Применяется в качестве источника опорного напряжения (ИОН) либо эталона напряжения… … Википедия

    СЦ 25 Серебряно цинковый аккумулятор вторичный химический источник тока, аккумулятор, в котором анод это оксид серебра, в виде спресованного порошка, катод смесь … Википедия

    Миниатюрные элементы питания различного размера Миниатюрный элемент питания батарейка размером с пуговицу, впервые широко начала применяться в электронных наручных часах, поэтому называется также … Википедия

    Ртутно цинковый элемент («тип РЦ») гальванический элемент в котором анодом является цинк, катодом оксид ртути, электролит раствор гидроксида калия. Достоинства: постоянство напряжения и огромная энергоемкость и энергоплотность. Недостатки:… … Википедия

    Марганцево цинковый гальванический элемент, в котором в качестве катода используется диоксид марганца, анода порошкообразный цинк, а в качестве электролита раствор щёлочи, обычно гидроксида калия. Содержание 1 История изобретения … Википедия

    Никель цинковый аккумулятор это химический источник тока, в котором анодом является цинк, электролитом гидроксид калия с добавкой гидроксида лития, а катодом оксид никеля. Часто сокращается аббревиатурой NiZn. Достоинства:… … Википедия

Выход компактных воздушно-цинковых аккумуляторов на массовый рынок может значительно изменить ситуацию в рыночном сегменте малогабаритных источников автономного питания для портативных компьютеров и цифровых устройств.

Энергетическая проблема

а последние годы значительно увеличился парк портативных компьютеров и различных цифровых устройств, многие из которых появились на рынке совсем недавно. Этот процесс заметно ускорился в связи с увеличением популярности мобильных телефонов. В свою очередь, стремительный рост количества портативных электронных устройств вызвал серьезное увеличение спроса на автономные источники электроэнергии, в частности на различные виды батареек и аккумуляторов.

Однако необходимость обеспечения огромного количества портативных устройств элементами питания является лишь одной стороной проблемы. Так, по мере развития портативных электронных устройств увеличивается плотность монтажа элементов и мощность используемых в них микропроцессоров — всего за три года тактовая частота используемых процессоров КПК возросла на порядок. На смену крошечным монохромным экранам приходят цветные дисплеи с высоким разрешением и увеличенным размером экрана. Все это приводит к росту энергопотребления. Кроме того, в сфере портативной электроники явно прослеживается тенденция к дальнейшей миниатюризации. С учетом перечисленных факторов становится вполне очевидно, что увеличение энергоемкости, мощности, долговечности и надежности используемых элементов питания является одним из важнейших условий для обеспечения дальнейшего развития портативных электронных устройств.

Весьма остро проблема возобновляемых источников автономного питания стоит в сегменте портативных ПК. Современные технологии позволяют создавать ноутбуки, практически не уступающие по своей функциональной оснащенности и производительности полноценным настольным системам. Однако отсутствие достаточно эффективных источников автономного питания лишает пользователей ноутбуков одного из главных преимуществ данного вида компьютеров — мобильности. Хорошим показателем для современного ноутбука, оснащенного литий-ионным аккумулятором, является время автономной работы порядка 4 часов 1 , но для полноценной работы в мобильных условиях этого явно недостаточно (например, перелет из Москвы в Токио занимает около 10 часов, а из Москвы в Лос-Анджелес — почти 15).

Одним из вариантов решения проблемы увеличения времени автономной работы портативных ПК является переход от ныне распространенных никель-металлгидридных и литий-ионных аккумуляторов к химическим топливным элементам 2 . Наиболее перспективными с точки зрения применения в портативных электронных устройствах и ПК являются топливные элементы с низкой рабочей температурой — такие как PEM (Proton Exchange Membrane) и DMCF (Direct Methanol Fuel Cells). В качестве топлива для этих элементов используется водный раствор метилового спирта (метанола) 3 .

Впрочем, на данном этапе описывать будущее химических топливных элементов исключительно в розовых тонах было бы чересчур оптимистично. Дело в том, что на пути массового распространения топливных элементов в портативных электронных устройствах стоят как минимум два препятствия. Во-первых, метанол является довольно токсичным веществом, что предполагает повышенные требования к герметичности и надежности топливных картриджей. Во-вторых, для обеспечения приемлемой скорости прохождения химических реакций в топливных элементах с низкой рабочей температурой необходимо использовать катализаторы. В настоящее время в PEM- и DMCF-элементах применяются катализаторы из платины и ее сплавов, но природные запасы этого вещества невелики, а его стоимость высока. Теоретически возможно заменить платину иными катализаторами, однако пока ни одному из коллективов, занимающихся исследованиями в данном направлении, не удалось найти приемлемой альтернативы. Сегодня так называемая платиновая проблема является, пожалуй, наиболее серьезной преградой на пути широкого распространения топливных элементов в портативных ПК и электронных устройствах.

1 Имеется в виду время работы от штатного аккумулятора.

2 Подробнее о топливных элементах можно прочитать в статье «Топливные элементы: год надежд», опубликованной в № 1’2005.

3 PEM-элементы, работающие на газообразном водороде, оснащаются встроенным конвертором для получения водорода из метанола.

Воздушно-цинковые элементы

отя авторы ряда публикаций считают воздушно-цинковые батареи и аккумуляторы одним из подвидов топливных элементов, это не совсем верно. Ознакомившись с устройством и принципом работы воздушно-цинковых элементов даже в общих чертах, можно сделать вполне однозначный вывод о том, что корректнее рассматривать их именно как отдельный класс автономных источников питания.

Конструкция ячейки воздушно-цинкового элемента включает катод и анод, разделенные щелочным электролитом и механическими сепараторами. В качестве катода используется газодиффузный электрод (gas diffusion electrode, GDE), водопроницаемая мембрана которого позволяет получать кислород из циркулирующего через нее атмосферного воздуха. «Топливом» является цинковый анод, окисляющийся в процессе работы элемента, а окислителем — кислород, получаемый из поступающего через «дыхательные отверстия» атмосферного воздуха.

На катоде происходит реакция электровосстановления кислорода, продуктами которой являются отрицательно заряженные гидроксид-ионы:

O 2 + 2H 2 O +4e 4OH – .

Гидроксид-ионы движутся в электролите к цинковому аноду, где происходит реакция окисления цинка с высвобождением электронов, которые через внешнюю цепь возвращаются на катод:

Zn + 4OH – Zn(OH) 4 2– + 2e.

Zn(OH) 4 2– ZnO + 2OH – + H 2 O.

Вполне очевидно, что воздушно-цинковые элементы не попадают под классификацию химических топливных элементов: во-первых, в них используется расходуемый электрод (анод), а во-вторых, топливо изначально закладывается внутрь ячейки, а не подается в ходе работы извне.

Напряжение между электродами одной ячейки воздушно-цинкового элемента составляет 1,45 В, что очень близко к аналогичному параметру щелочных (алкалиновых) батареек. При необходимости, чтобы получить более высокое напряжение питания, можно объединять несколько последовательно соединенных ячеек в батарею.

Цинк является довольно распространенным и недорогим материалом, благодаря чему при развертывании массового производства воздушно-цинковых элементов производители не будут испытывать проблем с сырьем. Кроме того, даже на начальном этапе стоимость таких источников питания будет вполне конкурентоспособной.

Немаловажно и то, что воздушно-цинковые элементы являются весьма экологичными изделиями. Материалы, применяемые для их производства, не отравляют окружающую среду и могут быть вторично использованы после переработки. Продукты реакции воздушно-цинковых элементов (вода и оксид цинка) тоже абсолютно безопасны для человека и окружающей среды — оксид цинка даже применяется в качестве основного компонента детской присыпки.

Из эксплуатационных свойств воздушно-цинковых элементов стоит отметить такие достоинства, как низкая скорость саморазряда в неактивированном состоянии и малое изменение величины напряжения по мере разряда (плоская разрядная кривая).

Определенным недостатком воздушно-цинковых элементов является влияние относительной влажности поступающего воздуха на характеристики элемента. Например, у воздушно-цинкового элемента, рассчитанного на эксплуатацию в условиях относительной влажности воздуха 60%, при увеличении влажности до 90% срок службы уменьшается примерно на 15%.

От батарей к аккумуляторам

аиболее простым в реализации вариантом воздушно-цинковых элементов являются одноразовые батареи. При создании воздушно-цинковых элементов большого размера и мощности (например, предназначенных для питания силовых установок транспортных средств) кассеты цинковых анодов можно делать заменяемыми. В этом случае для возобновления запаса энергии достаточно изъять кассету с отработавшими электродами и установить вместо нее новую. Отработанные электроды можно восстанавливать для повторного применения электрохимическим способом на специализированных предприятиях.

Если же говорить о компактных элементах питания, пригодных для использования в портативных ПК и электронных устройствах, то здесь практическая реализация варианта с заменяемыми кассетами цинковых анодов невозможна из-за небольшого размера батарей. Именно поэтому большинство представленных в настоящее время на рынке компактных воздушно-цинковых элементов являются одноразовыми. Однократно используемые воздушно-цинковые элементы питания небольшого размера выпускают компании Duracell, Eveready, Varta, Matsushita, GP, а также отечественное предприятие «Энергия». Основная сфера применения подобных источников питания — слуховые аппараты, портативные радиостанции, фототехника и т.п.

В настоящее время многие компании производят одноразовые воздушно-цинковые батареи

Несколько лет тому назад компания AER выпускала плоские воздушно-цинковые батареи Power Slice, предназначенные для портативных компьютеров. Эти элементы были разработаны для ноутбуков серий Omnibook 600 и Omnibook 800 компании Hewlett-Packard; время их автономной работы составляло от 8 до 12 часов.

В принципе существует и возможность создания и перезаряжаемых воздушно-цинковых элементов (аккумуляторов), в которых при подключении внешнего источника тока на аноде будет протекать реакция восстановления цинка. Однако практическому воплощению подобных проектов долгое время препятствовали серьезные проблемы, обусловленные химическими свойствами цинка. Оксид цинка хорошо растворяется в щелочном электролите и в растворенном виде распределяется по всему объему электролита, удаляясь от анода. Из-за этого при зарядке от внешнего источника тока в значительной степени изменяется геометрия анода: восстанавливаемый из оксида цинк осаждается на поверхности анода в виде ленточных кристаллов (дендритов), по форме похожих на длинные шипы. Дендриты пронзают насквозь сепараторы, вызывая короткое замыкание внутри батареи.

Данная проблема усугубляется тем, что для повышения мощности аноды воздушно-цинковых элементов изготавливаются из измельченного порошкового цинка (это позволяет значительно увеличить площадь поверхности электрода). Таким образом, по мере увеличения количества циклов заряда-разряда площадь поверхности анода будет постепенно уменьшаться, оказывая негативное влияние на рабочие характеристики элемента.

К настоящему времени наибольших успехов в области создания компактных воздушно-цинковых аккумуляторов удалось достичь компании Zinc Matrix Power (ZMP). Специалисты ZMP разработали уникальную технологию Zinc Matrix, которая позволила решить основные проблемы, возникающие в процессе заряда аккумуляторов. Суть этой технологии заключается в использовании полимерного связующего вещества, которое обеспечивает беспрепятственное проникновение гидроксид-ионов, но при этом блокирует перемещение растворяющегося в электролите оксида цинка. Благодаря использованию этого решения удается избежать заметного изменения формы и площади поверхности анода на протяжении как минимум 100 циклов заряда-разряда.

Достоинствами воздушно-цинковых аккумуляторов являются длительное время работы и большая удельная энергоемкость, как минимум вдвое превышающая аналогичные показатели лучших литий-ионных аккумуляторов. Удельная энергоемкость воздушно-цинковых аккумуляторов достигает 240 Вт·ч на 1 кг веса, а максимальная мощность — 5000 Вт/кг.

По данным разработчиков ZMP, сегодня возможно создание воздушно-цинковых аккумуляторов для портативных электронных устройств (мобильных телефонов, цифровых плееров и т.п.) с энергоемкостью порядка 20 Вт·ч. Минимально возможная толщина подобных источников питания составляет всего 3 мм. Экспериментальные же прототипы воздушно-цинковых аккумуляторов для ноутбуков обладают энергоемкостью от 100 до 200 Вт·ч.

Прототип воздушно-цинкового аккумулятора, созданный специалистами компании Zinc Matrix Power

Еще одно важное достоинство воздушно-цинковых аккумуляторов — полное отсутствие так называемого эффекта памяти. В отличие от других типов аккумуляторов, воздушно-цинковые элементы можно подзаряжать при любом уровне заряда, причем без ущерба для их энергоемкости. Кроме того, в отличие от литиевых аккумуляторов воздушно-цинковые элементы являются гораздо более безопасными.

В заключение нельзя не упомянуть об одном важном событии, которое стало символической отправной точкой на пути коммерциализации воздушно-цинковых элементов: 9 июня прошедшего года Zinc Matrix Power официально объявила о подписании стратегического соглашения с корпорацией Intel. В соответствии с пунктами данного соглашения ZMP и Intel объединят свои усилия в области разработки новой технологии аккумуляторных батарей для портативных ПК. Среди основных целей этих работ — увеличение времени автономной работы ноутбуков до 10 часов. Согласно имеющемуся плану, первые модели оснащенных воздушно-цинковыми аккумуляторами ноутбуков должны появиться в продаже уже в 2006 году.

Миниатюрные воздушно-цинковые элементы питания (гальванические «таблетки») номинальным напряжением 1,4В применяются для надежной и бесперебойной работы аналоговых и цифровых слуховых аппаратов, усилителей звука и кохлеарных имплантов. Высокая экологичность микробатареек и неспособность давать протечки обеспечивают полную безопасность потребителей. Наш интернет-магазин предлагает вам купить по доступным ценам широчайший ассортимент высококачественных батареек к слуховым аппаратам внутриканального, внутриушного и заушного типов.

Преимущества батареек для слуховых аппаратов

В корпусе воздушно-цинковой батареи расположен анод из цинка, воздушный электрод и электролит. Катализатором реакции окисления и образования электрического тока выступает атмосферный кислород, поступающий через специальную мембрану в корпусе. Такая конфигурация элемента питания обеспечивает ряд эксплуатационных преимуществ:

  • компактность и малый вес;
  • простоту хранения и применения;
  • равномерную отдачу заряда;
  • низкий саморазряд (от 2% в год);
  • большой срок службы.

Чтобы вы могли своевременно заменять изношенные батареи на новые в устройствах слабой, средней и сильной мощности, мы реализуем батарейки для слуховых аппаратов в СПб в удобных упаковках по 4, 6 или 8 шт.

Как правильно купить батарейки для слуховых аппаратов

На нашем сайте всегда можно купить в розницу и оптом батарейки для аппарата усиления слуха от известных производителей Renata, GP, Energizer, Camelion. Чтобы корректно подобрать типоразмер элемента питания воспользуйтесь нашей таблицей, ориентируясь на цвет защитной пленки и тип аппарата.

Внимание! После снятия цветной герметизирующей наклейки необходимо выждать несколько минут и только после этого вставлять «таблетку» в устройство. Это время необходимо для попадания достаточного количества кислорода вовнутрь батареи и ее выхода на полную мощность.

Наши цены ниже, чем у конкурентов, потому что мы покупаем напрямую у производителя.

Технология батареек значительно усовершенство-валась за последние 10 лет, увеличивая ценность слуховых аппаратов и улучшая их характеристики. С тех пор, как на рынке СА господство завоевал цифровой процессор, индустрия батареек буквально рванулась вперед.

День ото дня растет количество людей, использующих в качестве источника питания для слуховых аппаратов воздушно-цинковые батарейки. Эти элементы питания экологически безопасны и, благодаря повышенной емкости, служат значительно дольше, чем другие виды батареек. Однако точный срок службы используемого элемента назвать сложно, он зависит от многих факторов. В определенные моменты у пользователей возникают вопросы и нарекания. <Радуга Звуков> постарается дать исчерпывающий ответ на очень важный вопрос: так от чего же зависит срок службы батарейки?

ДОСТОИНСТВА...

В течение долгих лет основным источником энергии для слуховых аппаратов служили ртутно-окисные батарейки. Однако в середине 90-х гг. стало ясно, что они окончательно устарели. Во-первых, они содержали ртуть - крайне вредное вещество. Во-вторых, возникли и начали бурно завоевывать рынок цифровые СА, предъявляющие принципиально иные требования к характеристикам элементов питания.

На смену ртутно-окисной пришла воздушно-цинковая технология. Она уникальна тем, что в качестве одного из компонентов (катода) химического элемента питания используется кислород окружающего воздуха, который поступает через специальные отверстия. Благодаря удалению из корпуса батарейки оксида ртути или серебра, которые до сих пор служили в качестве катода, в нем освободилось больше пространства для цинкового порошка. Поэтому воздушно-цинковая батарейка является более энергоемкой, если сравнивать между собой разные типы батареек одинакового объема. Благодаря этому остроумному решению воздушно-цинковая батарейка будет оставаться вне конкуренции до тех пор, пока ее емкость будет ограничиваться крохотным объемом современных миниатюрных СА.

На плюсовой стороне батарейки имеется одно или несколько отверстий (в зависимости от ее величины), в которые поступает воздух. Химическая реакция, в ходе которой генерируется ток, протекает довольно быстро и полностью завершается в течение двух-трех месяцев, даже без нагрузки на батарейку. Поэтому в процессе изготовления эти отверстия закрывают защитной пленкой.

Для подготовки к работе необходимо удалить наклейку и дать время активному веществу насытиться кислородом (от 3 до 5 минут). Если начать эксплуатацию батарейки сразу после вскрытия, то активация произойдет только в поверхностном слое вещества, что существенно скажется на сроке службы.

Важную роль играет размер батарейки. Чем он больше, тем больше в ней запасов активного вещества, а, значит, и больше накопленной энергии. Поэтому самой большой емкостью обладает батарейка 675 типоразмера, а самой маленькой - 5 типоразмера. Емкость батареек зависит и от фирмы-производителя. Например, для батареек 675 типоразмера она может варьироваться от 440 мАч до 460 мАч.

И ОСОБЕННОСТИ

Во-первых, напряжение, поставляемое батарейкой, зависит от времени ее работы, а точнее сказать, от степени ее разрядки. Новая воздушно-цинковая батарейка может давать напряжение до 1,4 В, но лишь на короткое время. Затем напряжение падает до 1,25 В, и держится продолжительное время. А под конец эксплуатации батарейки напряжение резко падает до величины менее 1 В.

Во-вторых, воздушно-цинковые батарейки функционируют тем лучше, чем теплее вокруг. При этом, конечно, не следует превышать максимальную температуру, установленную для данного вида батареек. Это относится ко всем батарейкам. Но особенность воздушно-цинковых батареек заключается в том, что их производительность зависит еще и от влажности воздуха. Протекающие в ней химические процессы зависят от наличия определенного количества влаги. Говоря проще: чем жарче и влажнее, тем лучше (это относится только к батарейкам для СА!). А то, что влажность отрицательно действует на другие компоненты слуховой системы - это уже другой вопрос.

В-третьих, внутреннее сопротивление батарейки зависит от ряда факторов: температура, влажность, время работы и технологии, используемой фирмой-производителем. Чем выше температура и влажность, тем меньше импеданс, что благотворно влияет на работу слуховой системы. У новой 675-й батарейки внутреннее сопротивление составляет 1-2 Ом. Однако в конце срока службы эта величина может возрасти до 10 Ом, а у 13-й батарейки - до 20 Ом. В зависимости от производителя, эта величина может значительно изменяться, что создает проблемы в случае, когда требуется максимальная мощность, записанная в техническом паспорте.

При превышении критической величины потребления тока конечная ступень или вся слуховая система отключается, чтобы батарейка могла восстановиться. Если после <дыхательной паузы> батарейка вновь начинает давать ток в количестве, достаточном для эксплуатации, СА снова включается. Во многих слуховых системах повторное включение сопровождается звуковым сигналом, тем же, который оповещает о падении напряжения в батарейке. То есть, в ситуации, когда СА отключается из-за высокого потребления тока, при его повторном включении звучит оповещающий сигнал, хотя батарейка может быть абсолютно новой. Эта ситуация обычно наблюдается в том случае, когда в слуховой аппарат поступает очень высокий входной УЗД, а сам аппарат настроен на полную мощность.

Факторы, влияющие на срок службы

Одна из основных задач, стоящих перед батарейками, это обеспечение постоянной подачи тока в течение всего срока службы батарейки.

В первую очередь срок службы батарейки определяется типом используемого СА. Как правило, аналоговые аппараты потребляют больший ток, чем цифровые, а мощные - больше, чем маломощные. Типичные значения потребляемого тока для аппаратов средней мощности составляют от 0.8 до 1.5 мА, а для мощных и сверхмощных аппаратов - от 2 до 8 мА.

Цифровые СА в целом проявляют большую экономичность, чем аналоговые СА той же мощности. Однако им присущ один недостаток - в момент переключения программ или автоматического срабатывания сложных функций обработки сигнала (подавление шумов, распознавание речи и пр.) эти аппараты потребляют существенно больший ток, чем в обычном режиме. Потребность в энергии может возрастать и снижаться в зависимости от того, какую функцию по обработке сигнала осуществляет в данный момент цифровая схема, и даже от того, требует ли коррекция потери слуха пациента разного усиления при разных входных УЗД.

Окружающая акустическая ситуация также сказывается на сроке службы батареек. В тихой обстановке уровень акустического сигнала обычно невысок - порядка 30-40 дБ. При этом сигнал, поступающий в СА, также невелик. В шумной обстановке, например в метро, электричке, на производстве или шумной улице уровень акустического сигнала может достигать 90 и более дБ (отбойный молоток - около 110 дБ). Это ведет к повышению уровня выходящего сигнала СА и, соответственно, повышенному току его потребления. При этом начинают сказываться и настройки аппарата - при большем усилении ток потребления также больше. Обычно окружающие шумы сосредоточены в низкочастотном диапазоне, поэтому при большем подавлении НЧ диапазона регулятором тембра ток потребления также снижается.

Ток потребления аппаратов средней мощности не слишком зависит от уровня входящего сигнала, но для мощных и сверхмощных СА разница достаточно велика. Например, при входящем сигнале интенсивностью 60 дБ (при которой и нормируется ток потребления СА) сила тока составляет 2-3 мА. При входящем сигнале 90 дБ (и тех же настройках СА) ток возрастает до 15-20 мА.

Методика оценки срока службы батарейки

Обычно срок службы батарейки оценивается с учетом ее номинальной емкости и расчетного тока потребления аппарата,указанного в технических данных (паспорте) на аппарат. Возьмем типичный случай: воздушно-цинковая батарейка 675 типоразмера типовой емкостью 460 мАч.

При использовании ее в аппарате средней мощности с током потребления 1.4мА теоретический срок службы составит 460/1.4=328 часов. При ношении аппарата в течение 10 часов в сутки это означает более месяца работы аппарата (328/10=32.8).

При питании мощного аппарата в тихой обстановке (ток потребления 2 мА) срок службы составит 230 часов, то есть, около трех недель при 10-часовом ношении. Но, если обстановка шумная, то ток потребления может достигать 15-20 мА (в зависимости от типа аппарата). В таком режиме срок службы составит 460/20=23 часа, т.е. менее 3 дней. Конечно, все 10 часов в такой обстановке никто не ходит, и реальный режим будет смешанным по току потребления. Так что данный пример просто иллюстрирует методику расчета, давая крайние значения срока службы. Обычно срок службы батареек в мощном аппарате располагается в диапазоне от двух до трех недель.

Применяйте элементы питания, предназначенные специально для слуховых аппаратов (имеющие маркировку или соответствующие надписи) известных производителей источников питания (GP, Renata, Energizer, Varta, Panasonic, Duracell Activair, Rayovac).

Не нарушайте защитную пленку батарейки (не вскрывайте) до момента установки в слуховой аппарат.

Храните батарейки в блистерах при комнатной температуре и нормальной влажности. Желание <сберечь> подольше батарейки в холодильнике может привести к прямо противоположному результату - СА с новой батарейкой вообще не заработает.

Перед установкой батарейки в аппарат выдержите ее без пленки 3-5 минут.

Выключайте СА, когда им не пользуетесь. На ночь вынимайте источники питания из аппарата и оставляйте открытым батарейный отсек.