Все ли матрицы имеют определитель. Методы вычисления определителей. Метод Крамера решения систем линейных уравнений

Задана система N линейных алгебраических уравнений (СЛАУ) с неизвестными, коэффициентами при которых являются элементы матрицы , а свободными членами — числа

Первый индекс возле коэффициентов указывает в каком уравнении находится коэффициент, а второй — при котором из неизвестным он находится.

Если определитель матрицы не равен нулю

то система линейных алгебраических уравнений имеет единственное решение.

Решением системы линейных алгебраических уравнений называется такая упорядоченная совокупность чисел , которая при превращает каждое из уравнений системы в правильную равенство.

Если правые части всех уравнений системы равны нулю, то систему уравнений называют однородной. В случае, когда некоторые из них отличны от нуля – неоднородной

Если система линейных алгебраических уравнений имеет хоть одно решение, то она называется совместной, в противном случае — несовместимой.

Если решение системы единственное, то система линейных уравнений называется определенной. В случае, когда решение совместной системы не единственный, систему уравнений называют неопределенной.

Две системы линейных уравнений называются эквивалентными (или равносильными), если все решения одной системы является решениями второй, и наоборот. Эквивалентны (или равносильны) системы получаем с помощью эквивалентных преобразований.

Эквивалентные преобразования СЛАУ

1) перестановка местами уравнений;

2) умножение (или деление) уравнений на отличное от нуля число;

3) добавление к некоторого уравнения другого уравнения, умноженного на произвольное, отличное от нуля число.

Решение СЛАУ можно найти разными способами.

МЕТОД КРАМЕРА

ТЕОРЕМА КРАМЕРА. Если определитель системы линейных алгебраических уравнений с неизвестными отличен от нуля то эта система имеет единственное решение, которое находится по формулам Крамера:

— определители, образованные с заменой -го столбца, столбцом из свободных членов.

Если , а хотя бы один из отличен от нуля, то СЛАУ решений не имеет. Если же , то СЛАУ имеет множество решений. Рассмотрим примеры с применением метода Крамера.

—————————————————————

Дана система трех линейных уравнений с тремя неизвестными. Решить систему методом Крамера

Найдем определитель матрицы коэффициентов при неизвестных

Так как , то заданная система уравнений совместная и имеет единственное решение. Вычислим определители:

По формулам Крамера находим неизвестные

Итак единственное решение системы.

Дана система четырех линейных алгебраических уравнений. Решить систему методом Крамера.

Найдем определитель матрицы коэффициентов при неизвестных. Для этого разложим его по первой строке.

Найдем составляющие определителя:

Подставим найденные значения в определитель

Детерминант , следовательно система уравнений совместная и имеет единственное решение. Вычислим определители по формулам Крамера:

Разложим каждый из определителей по столбцу в котором есть больше нулей.

По формулам Крамера находим

Решение системы

Данный пример можно решить математическим калькулятором YukhymCALC . Фрагмент программы и результаты вычислений наведены ниже.


——————————

МЕТОД К Р А М Е Р А

|1,1,1,1|

D=|5,-3,2,-8|

|3,5,1,4|

|4,2,3,1|

D=1*(-3*1*1+2*4*2+(-8)*5*3-((-8)*1*2+2*5*1+(-3)*4*3))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))+1*(5*5*1+(-3)*4*4+(-8)*3*2-((-8)*5*4+(-3)*3*1+5*4*2))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))= 1*(-3+16-120+16-10+36)-1*(5+32-72+32-6-60)+1*(25-48-48+160+9-40)-1*(75-12+12-40+27-10)=1*(-65)-1*(-69)+1*58-1*52=-65+69+58-52=10

|0,1,1,1|

Dx1=|1,-3,2,-8|

|0,5,1,4|

|3,2,3,1|

Dx1=-1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))+1*(1*5*1+(-3)*4*3+(-8)*0*2-((-8)*5*3+(-3)*0*1+1*4*2))-1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))= -1*(1+24+0+24+0-12)+1*(5-36+0+120+0-8)-1*(15-9+0-30+0-2)= -1*(37)+1*81-1*(-26)=-37+81+26=70

|1,0,1,1|

Dx2=|5,1,2,-8|

|3,0,1,4|

|4,3,3,1|

Dx2=1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))+1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))= 1*(1+24+0+24+0-12)+1*(0+16-72+0-3-60)-1*(0+4+18+0-9-15)= 1*37+1*(-119)-1*(-2)=37-119+2=-80

|1,1,0,1|

Dx3=|5,-3,1,-8|

|3,5,0,4|

|4,2,3,1|

Dx3=1*(-3*0*1+1*4*2+(-8)*5*3-((-8)*0*2+1*5*1+(-3)*4*3))-1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))-1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))= 1*(0+8-120+0-5+36)-1*(0+16-72+0-3-60)-1*(75+0+6-20+27+0)= 1*(-81)-1*(-119)-1*88=-81+119-88=-50

|1,1,1,0|

Dx4=|5,-3,2,1|

|3,5,1,0|

|4,2,3,3|

Dx4=1*(-3*1*3+2*0*2+1*5*3-(1*1*2+2*5*3+(-3)*0*3))-1*(5*1*3+2*0*4+1*3*3-(1*1*4+2*3*3+5*0*3))+1*(5*5*3+(-3)*0*4+1*3*2-(1*5*4+(-3)*3*3+5*0*2))= 1*(-9+0+15-2-30+0)-1*(15+0+9-4-18+0)+1*(75+0+6-20+27+0)= 1*(-26)-1*(2)+1*88=-26-2+88=60

x1=Dx1/D=70,0000/10,0000=7,0000

x2=Dx2/D=-80,0000/10,0000=-8,0000

x3=Dx3/D=-50,0000/10,0000=-5,0000

x4=Dx4/D=60,0000/10,0000=6,0000

Посмотреть материалы:

{jcomments on}

В общем случае правило вычисления определителей-го порядка является довольно громоздким. Для определителей второго и третьего порядка существуют рациональные способы их вычислений.

Вычисления определителей второго порядка

Чтобы вычислить определитель матрицы второго порядка, надо от произведения элементов главной диагонали отнять произведение элементов побочной диагонали:

Пример

Задание. Вычислить определитель второго порядка

Решение.

Ответ.

Методы вычисления определителей третьего порядка

Для вычисления определителей третьего порядка существует такие правила.

Правило треугольника

Схематически это правило можно изобразить следующим образом:

Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком «плюс»; аналогично, для второго определителя — соответствующие произведения берутся со знаком «минус», т.е.

Пример

Задание. Вычислить определитель методом треугольников.

Решение.

Ответ.

Правило Саррюса

Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком «плюс»; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком «минус»:

Пример

Задание. Вычислить определитель с помощью правила Саррюса.

Решение.

Ответ.

Разложение определителя по строке или столбцу

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения.

Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.

Пример

Задание. Разложив по первой строке, вычислить определитель

Решение.

Ответ.

Этот метод позволяет вычисление определителя свести к вычислению определителя более низкого порядка.

Пример

Задание. Вычислить определитель

Решение. Выполним следующие преобразования над строками определителя: из второй строки отнимем четыре первых, а из третьей первую строку, умноженную на семь, в результате, согласно свойствам определителя, получим определитель, равный данному.

Определитель равен нулю, так как вторая и третья строки являются пропорциональными.

Ответ.

Для вычисления определителей четвертого порядка и выше применяется либо разложение по строке/столбцу, либо приведение к треугольному виду, либо с помощью теоремы Лапласа.

Разложение определителя по элементам строки или столбца

Пример

Задание. Вычислить определитель , разложив его по элементам какой-то строки или какого-то столбца.

Решение. Предварительно выполним элементарные преобразования над строками определителя, сделав как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих, от второй — пять третьих и от четвертой — три третьих строки, получаем:

Полученный определитель разложим по элементам первого столбца:

Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули, например, в первом столбце.

Для этого от первой строки отнимаем две вторые строки, а от третьей — вторую:

Ответ.

Замечание

Последний и предпоследний определители можно было бы и не вычислять, а сразу сделать вывод о том, что они равны нулю, так как содержат пропорциональные строки.

Приведение определителя к треугольному виду

С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его значение, согласно свойствам определителя, равно произведению элементов стоящих на главной диагонали.

Пример

Задание. Вычислить определитель приведением его к треугольному виду.

Решение. Сначала делаем нули в первом столбце под главной диагональю.

4.Свойства определителей. Определитель произведения матриц.

Все преобразования будет выполнять проще, если элемент будет равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя, приведет к тому, что он сменит знак на противоположный:

Далее получаем нули во втором столбце на месте элементов, стоящих под главной диагональю. И снова, если диагональный элемент будет равен , то вычисления будут более простыми. Для этого меняем местами вторую и третью строки (и при этом меняется на противоположный знак определителя):

Ответ.

Теорема Лапласа

Пример

Задание. Используя теорему Лапласа, вычислить определитель

Решение. Выберем в данном определителе пятого порядка две строки — вторую и третью, тогда получаем (слагаемые, которые равны нулю, опускаем):

Ответ.

ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА I

§ 31 Случай, когда главный определитель системы уравнений равен нулю, а хотя бы один из вспомогательных определителей отличен от нуля

Теорема. Если главный определитель системы уравнений

(1)

равен нулю, а хотя бы один из вспомогательных определителей отличен от нуля, то система несовместна.

Формально, доказательство этой теоремы нетрудно получить методом от противного. Предположим, что система уравнений (1) имеет решение (x 0 , y 0). Тогда как показано в предыдущем параграфе,

Δ x 0 = Δ x , Δ y 0 = Δ y (2)

Но по условию Δ = 0, а хотя бы один из определителей Δ x и Δ y отличен от нуля. Таким образом, равенства (2) одновременно выполняться не могут. Теорема доказана.

Однако представляется интересным более детально выяснить, почему система уравнений (1) в рассматриваемом случае несовместна.

означает, что коэффициенты при неизвестных в системе уравнений (1) пропорциональны. Пусть, например,

a 1 = ka 2 , b 1 = kb 2 .

означает, что коэффициенты при у и свободные члены уравнений системы (1) не пропорциональны. Поскольку b 1 = kb 2 , то c 1 =/= kc 2 .

Следовательно, система уравнений (1) может быть записана в следующем виде:

В этой системе коэффициенты при неизвестных соответственно пропорциональны, но коэффициенты при у (или при х ) и свободные члены не пропорциональны. Такая система, конечно, несовместна. Действительно, если бы она имела решение (x 0 , y 0), то выполнялись бы числовые равенства

k (a 2 x 0 + b 2 y 0) = c 1

a 2 x 0 + b 2 y 0 = c 2 .

Но одно из этих равенств противоречит другому: ведь c 1 =/= kc 2 .

Мы рассмотрели лишь случай, когда Δ x =/= 0. Аналогично может быть рассмотрен случай, когда Δ y =/= 0."

Доказанную теорему можно сформулировать и таким образом.

Если коэффициенты при неизвестных х и у в системе уравнений (1) пропорциональны, а коэффициенты при какой-нибудь из этих неизвестных и свободные члены не пропорциональны, то эта система уравнений несовместна.

Легко, например, убедиться в том, что каждая из данных систем будет несовместной:

Метод Крамера решения систем линейных уравнений

Формулы Крамера

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных.

Метод Крамера. Применение для систем линейных уравнений

Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

*

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

**
,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.

.

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

К началу страницы

Пройти тест по теме Системы линейных уравнений

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 4. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

,

.

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 7. Решить систему линейных уравнений методом Крамера:

.

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных

Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.

По формулам Крамера находим:

Итак, решение системы — (1; 1; -1; -1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.

Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Пройти тест по теме Системы линейных уравнений

Другое по теме «Системы уравнений и неравенств»

Калькулятор — решение систем уравнений онлайн

Программная реализация метода Крамера на C++

Решение систем линейных уравнений методом подстановки и методом сложения

Решение систем линейных уравнений методом Гаусса

Условие совместности системы линейных уравнений.

Теорема Кронекера-Капелли

Решение систем линейных уравнений матричным методом (обратной матрицы)

Системы линейных неравенств и выпуклые множества точек

Начало темы «Линейная алгебра»

Определители

В этой статье мы познакомимся с очень важным понятием из раздела линейной алгебры, которое называется определитель.

Сразу хотелось бы отметить важный момент: понятие определитель действительно только для квадратных матриц (число строк = числу столбцов), у других матриц его нет.

Определитель квадратной матрицы (детерминант) — численная характеристика матрицы.

Обозначение определителей: |A|, det A, A.

Определителем «n» порядка называют алгебраическую сумму всех возможных произведений его элементов, удовлетворяющих следующим требованиям:

1) Каждое такое произведение содержит ровно «n» элементов (т.е. определитель 2 порядка — 2 элемента).

2) В каждом произведении присутствует в качестве сомножителя представитель каждой строки и каждого столбца.

3) Любые два сомножителя в каждом произведении не могут принадлежать одной строке или столбцу.

Знак произведения определяется порядком чередования номеров столбцов, если в произведении элементы расставлены в порядке возрастания номеров строк.

Рассмотрим несколько примеров нахождения детерминанта матрицы:

У матрицы первого порядка (т.е.

Линейные уравнения. Решение систем линейных уравнений. Метод Крамера.

имеется всего 1 элемент), детерминант равен этому элементу:

2. Рассмотрим квадратную матрицу второго порядка:

3. Рассмотрим квадратную матрицу третьего порядка (3×3):

4. А теперь рассмотрим примеры с действительными числами:

Правило треугольника.

Правило треугольника — это способ вычисления определителя матрицы, который предполагает его нахождение по следующей схеме:

Как вы уже поняли, метод был назван правилом треугольника в следствии того, что перемножаемые элементы матрицы образуют своеобразные треугольники.

Для того, чтобы понять это лучше, разберём такой пример:

А теперь рассмотрим вычисление определителя матрицы с действительными числами правилом треугольника:

Для закрепления пройденного материала, решим ещё один практический пример:

Свойства определителей:

1. Если элементы строки или столбца равны нулю, то и определитель равен нулю.

2. Определитель изменит знак, если поменять местами какие-либо 2 строки или столбца. Рассмотрим это на небольшом примере:

3. Определитель транспонированной матрицы равен определителю исходной матрицы.

4. Определитель равен нулю, если элементы одной строки равны соответствующим элементам другой строки (для столбцов также). Самый простой пример этого свойства определителей:

5. Определитель равен нулю, если его 2 строки пропорциональны (также и для столбцов). Пример (1 и 2 строка пропорциональны):

6. Общий сомножитель строки (столбца) может быть вынесен за знак определителя.

7) Определитель не изменится, если к элементам какой-либо строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одну и ту же величину. Рассмотрим это на примере:

  • Минор и алгебраическое дополнение
  • Сложение и вычитание матриц на примерах
  • Действия с матрицами
  • Понятие «матрицы»
  • Просмотры: 57258

    Определитель(он же determinant(детерминант)) находится только у квадратных матриц. Определитель есть ничто иное, как значение сочетающее в себе все элементы матрицы, сохранающееся при транспонировании строк или столбцов. Обозначаться он может как det(A), |А|, Δ(A), Δ, где А может быть как матрицей, так и буквой обозначающей ее. Найти его можно разными методами:

    Все выше предложенные методы будут разобраны на матрицах размера от трех и выше. Определитель двумерной матрицы находится с помощью трех элементарных математических операций, поэтому ни в один из методов нахождение определителя двумерной матрицы не попадет. Ну кроме как дополнение, но об этом потом.

    Найдем определитель матрицы размером 2х2:

    Для того, чтобы найти определитель нашей матрицы, требуется вычесть произведение чисел одной диагонали из другой, а именно , то есть

    Примеры нахождения определителя матриц второго порядка

    Разложение по строке/столбцу

    Выбирается любая строка или столбец в матрице. Каждое число в выбранной линии умножается на (-1) i+j где(i,j — номер строки,столбца того числа) и перемножается с определителем второго порядка, составленного из оставшихся элементов после вычеркивания i — строки и j — столбца. Разберем на матрице

      1. Выберем строку/столбец

    Например возьмем вторую строку.

    Примечание: Если явно не указано, с помощью какой линии найти определитель, выбирайте ту линию у которой есть ноль. Меньше будет вычислений.

      1. Составим выражение

    Не трудно определить, что знак у числа меняется через раз. Поэтому вместо единиц можно руководствоваться такой таблицей:

      1. Поменяем знак у наших чисел
      1. Найдем определители у наших матриц
      1. Считаем все это

    Решение можно написать так:

    Примеры нахождения определителя разложением по строке/столбцу:

    Метод приведения к треугольному виду(с помощью элементарных преобразований)

    Определитель находится с помощью приведения матрицы к треугольному(ступенчатому) виду и перемножению элементов на главной диагонали

    Треугольной матрицей называется матрица, элементы которой по одну сторону диагонали равны нулю.

    При построении матрицы следует помнить три простых правила:

    1. Каждый раз при перестановке строк между собой определитель меняет знак на противоположный.
    2. При умножении/делении одной строки на не нулевое число, её следует разделить(если умножали)/умножить(если разделяли) на него же или же произвести это действие с полученным определителем.
    3. При прибавлении одной строки умноженной на число к другой строке, определитель не изменяется(умножаемая строка принимает своё исходное значение).

    Попытаемся получить нули в первом столбце, потом во втором.

    Взглянем на нашу матрицу:

    Та-а-ак. Чтобы вычисления были поприятнее, хотелось бы иметь самое близкое число сверху. Можно и оставить, но не надо. Окей, у нас во второй строке двойка, а на первой четыре.

    Поменяем же эти две строки местами.

    Поменяли строки местами, теперь мы должны либо поменять у одной строки знак, либо в конце поменять знак у определителя.

    Определители. Вычисление определителей (стр. 2)

    Сделаем это потом.

    Теперь, чтобы получить ноль в первой строке — умножим первую строку на 2.

    Отнимем 1-ю строку из второй.

    Согласно нашему 3-му правилу возващаем исходную строку в начальное положение.

    Теперь сделаем ноль в 3-ей строке. Можем домножить 1-ую строку на 1.5 и отнять от третьей, но работа с дробями приносит мало удовольствия. Поэтому найдем число, к которому можно привести обе строки — это 6.

    Умножим 3-ю строку на 2.

    Теперь умножим 1-ю строку на 3 и отнимем из 3-ей.

    Возвратим нашу 1-ю строку.

    Не забываем, что умножали 3-ю строку на 2, так что потом разделим определитель на 2.

    Один столбец есть. Теперь для того чтобы получить нули во втором — забудем про 1-ю строку — работаем со 2-й строкой. Домножим вторую строку на -3и прибавим к третьей.

    Не забываем вернуть вторую строку.

    Вот мы и построили треугольнаую матрицу. Что нам осталось? А осталось перемножить числа на главной диагонали, чем и займемся.

    Ну и осталось вспомнить, что мы должны разделить наш определитель на 2 и поменять знак.

    Правило Саррюса(Правило треугольников)

    Правило Саррюса применимо только к квадратным матрицам третьего порядка.

    Определитель вычисляется путем добавления первых двух столбцов справа от матрицы, перемножением элементов диагоналей матрицы и их сложением, и вычитанием суммы противоположных диагоналей. Из оранжевых диагоналей вычитаем фиолетовые.

    У правила треугольников то же, только картинка другая.

    Теорема Лапласа см. Разложение по строке/столбцу

    В общем случае правило вычисления определителей $n$-го порядка является довольно громоздким. Для определителей второго и третьего порядка существуют рациональные способы их вычислений.

    Вычисления определителей второго порядка

    Чтобы вычислить определитель матрицы второго порядка, надо от произведения элементов главной диагонали отнять произведение элементов побочной диагонали :

    $$\left| \begin{array}{ll}{a_{11}} & {a_{12}} \\ {a_{21}} & {a_{22}}\end{array}\right|=a_{11} \cdot a_{22}-a_{12} \cdot a_{21}$$

    Пример

    Задание. Вычислить определитель второго порядка $\left| \begin{array}{rr}{11} & {-2} \\ {7} & {5}\end{array}\right|$

    Решение. $\left| \begin{array}{rr}{11} & {-2} \\ {7} & {5}\end{array}\right|=11 \cdot 5-(-2) \cdot 7=55+14=69$

    Ответ. $\left| \begin{array}{rr}{11} & {-2} \\ {7} & {5}\end{array}\right|=69$

    Методы вычисления определителей третьего порядка

    Для вычисления определителей третьего порядка существует такие правила.

    Правило треугольника

    Схематически это правило можно изобразить следующим образом:

    Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком "плюс"; аналогично, для второго определителя - соответствующие произведения берутся со знаком "минус", т.е.

    $$\left| \begin{array}{ccc}{a_{11}} & {a_{12}} & {a_{13}} \\ {a_{21}} & {a_{22}} & {a_{23}} \\ {a_{31}} & {a_{32}} & {a_{33}}\end{array}\right|=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-$$

    $$-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}$$

    Пример

    Задание. Вычислить определитель $\left| \begin{array}{rrr}{3} & {3} & {-1} \\ {4} & {1} & {3} \\ {1} & {-2} & {-2}\end{array}\right|$ методом треугольников.

    Решение. $\left| \begin{array}{rrr}{3} & {3} & {-1} \\ {4} & {1} & {3} \\ {1} & {-2} & {-2}\end{array}\right|=3 \cdot 1 \cdot(-2)+4 \cdot(-2) \cdot(-1)+$

    $$+3 \cdot 3 \cdot 1-(-1) \cdot 1 \cdot 1-3 \cdot(-2) \cdot 3-4 \cdot 3 \cdot(-2)=54$$

    Ответ.

    Правило Саррюса

    Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком "плюс"; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком "минус":

    $$-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}$$

    Пример

    Задание. Вычислить определитель $\left| \begin{array}{rrr}{3} & {3} & {-1} \\ {4} & {1} & {3} \\ {1} & {-2} & {-2}\end{array}\right|$ с помощью правила Саррюса.

    Решение.

    $$+(-1) \cdot 4 \cdot(-2)-(-1) \cdot 1 \cdot 1-3 \cdot 3 \cdot(-2)-3 \cdot 4 \cdot(-2)=54$$

    Ответ. $\left| \begin{array}{rrr}{3} & {3} & {-1} \\ {4} & {1} & {3} \\ {1} & {-2} & {-2}\end{array}\right|=54$

    Разложение определителя по строке или столбцу

    Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения . Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.

    Пример

    Задание. Разложив по первой строке, вычислить определитель $\left| \begin{array}{lll}{1} & {2} & {3} \\ {4} & {5} & {6} \\ {7} & {8} & {9}\end{array}\right|$

    Решение. $\left| \begin{array}{lll}{1} & {2} & {3} \\ {4} & {5} & {6} \\ {7} & {8} & {9}\end{array}\right| \leftarrow=a_{11} \cdot A_{11}+a_{12} \cdot A_{12}+a_{13} \cdot A_{13}=$

    $1 \cdot(-1)^{1+1} \cdot \left| \begin{array}{cc}{5} & {6} \\ {8} & {9}\end{array}\right|+2 \cdot(-1)^{1+2} \cdot \left| \begin{array}{cc}{4} & {6} \\ {7} & {9}\end{array}\right|+3 \cdot(-1)^{1+3} \cdot \left| \begin{array}{cc}{4} & {5} \\ {7} & {8}\end{array}\right|=-3+12-9=0$

    Ответ.

    Этот метод позволяет вычисление определителя свести к вычислению определителя более низкого порядка.

    Пример

    Задание. Вычислить определитель $\left| \begin{array}{lll}{1} & {2} & {3} \\ {4} & {5} & {6} \\ {7} & {8} & {9}\end{array}\right|$

    Решение. Выполним следующие преобразования над строками определителя : из второй строки отнимем четыре первых, а из третьей первую строку, умноженную на семь, в результате, согласно свойствам определителя, получим определитель, равный данному.

    $$\left| \begin{array}{ccc}{1} & {2} & {3} \\ {4} & {5} & {6} \\ {7} & {8} & {9}\end{array}\right|=\left| \begin{array}{ccc}{1} & {2} & {3} \\ {4-4 \cdot 1} & {5-4 \cdot 2} & {6-4 \cdot 3} \\ {7-7 \cdot 1} & {8-7 \cdot 2} & {9-7 \cdot 3}\end{array}\right|=$$

    $$=\left| \begin{array}{rrr}{1} & {2} & {3} \\ {0} & {-3} & {-6} \\ {0} & {-6} & {-12}\end{array}\right|=\left| \begin{array}{ccc}{1} & {2} & {3} \\ {0} & {-3} & {-6} \\ {0} & {2 \cdot(-3)} & {2 \cdot(-6)}\end{array}\right|=0$$

    Определитель равен нулю, так как вторая и третья строки являются пропорциональными.

    Ответ. $\left| \begin{array}{lll}{1} & {2} & {3} \\ {4} & {5} & {6} \\ {7} & {8} & {9}\end{array}\right|=0$

    Для вычисления определителей четвертого порядка и выше применяется либо разложение по строке/столбцу, либо приведение к треугольному виду, либо с помощью теоремы Лапласа.

    Разложение определителя по элементам строки или столбца

    Пример

    Задание. Вычислить определитель $\left| \begin{array}{llll}{9} & {8} & {7} & {6} \\ {5} & {4} & {3} & {2} \\ {1} & {0} & {1} & {2} \\ {3} & {4} & {5} & {6}\end{array}\right|$ , разложив его по элементам какой-то строки или какого-то столбца.

    Решение. Предварительно выполним элементарные преобразования над строками определителя , сделав как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих, от второй - пять третьих и от четвертой - три третьих строки, получаем:

    $$\left| \begin{array}{cccc}{9} & {8} & {7} & {6} \\ {5} & {4} & {3} & {2} \\ {1} & {0} & {1} & {2} \\ {3} & {4} & {5} & {6}\end{array}\right|=\left| \begin{array}{cccc}{9-1} & {8-0} & {7-9} & {6-18} \\ {5-5} & {4-0} & {3-5} & {2-10} \\ {1} & {0} & {1} & {2} \\ {0} & {4} & {2} & {0}\end{array}\right|=\left| \begin{array}{rrrr}{0} & {8} & {-2} & {-12} \\ {0} & {4} & {-2} & {-8} \\ {1} & {0} & {1} & {2} \\ {0} & {4} & {2} & {0}\end{array}\right|$$

    Полученный определитель разложим по элементам первого столбца:

    $$\left| \begin{array}{rrrr}{0} & {8} & {-2} & {-12} \\ {0} & {4} & {-2} & {-8} \\ {1} & {0} & {1} & {2} \\ {0} & {4} & {2} & {0}\end{array}\right|=0+0+1 \cdot(-1)^{3+1} \cdot \left| \begin{array}{rrr}{8} & {-2} & {-12} \\ {4} & {-2} & {-8} \\ {4} & {2} & {0}\end{array}\right|+0$$

    Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули, например, в первом столбце. Для этого от первой строки отнимаем две вторые строки, а от третьей - вторую:

    $$\left| \begin{array}{rrr}{8} & {-2} & {-12} \\ {4} & {-2} & {-8} \\ {4} & {2} & {0}\end{array}\right|=\left| \begin{array}{rrr}{0} & {2} & {4} \\ {4} & {-2} & {-8} \\ {0} & {4} & {8}\end{array}\right|=4 \cdot(-1)^{2+2} \cdot \left| \begin{array}{ll}{2} & {4} \\ {4} & {8}\end{array}\right|=$$

    $$=4 \cdot(2 \cdot 8-4 \cdot 4)=0$$

    Ответ. $\left| \begin{array}{cccc}{9} & {8} & {7} & {6} \\ {5} & {4} & {3} & {2} \\ {1} & {0} & {1} & {2} \\ {3} & {4} & {5} & {6}\end{array}\right|=0$

    Замечание

    Последний и предпоследний определители можно было бы и не вычислять, а сразу сделать вывод о том, что они равны нулю, так как содержат пропорциональные строки.

    Приведение определителя к треугольному виду

    С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его значение, согласно свойствам определителя , равно произведению элементов стоящих на главной диагонали.

    Пример

    Задание. Вычислить определитель $\Delta=\left| \begin{array}{rrrr}{-2} & {1} & {3} & {2} \\ {3} & {0} & {-1} & {2} \\ {-5} & {2} & {3} & {0} \\ {4} & {-1} & {2} & {-3}\end{array}\right|$ приведением его к треугольному виду.

    Решение. Сначала делаем нули в первом столбце под главной диагональю. Все преобразования будет выполнять проще, если элемент $a_{11}$ будет равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя, приведет к тому, что он сменит знак на противоположный:

    $$\Delta=\left| \begin{array}{rrrr}{-2} & {1} & {3} & {2} \\ {3} & {0} & {-1} & {2} \\ {-5} & {2} & {3} & {0} \\ {4} & {-1} & {2} & {-3}\end{array}\right|=-\left| \begin{array}{rrrr}{1} & {-2} & {3} & {2} \\ {0} & {3} & {-1} & {2} \\ {2} & {-5} & {3} & {0} \\ {-1} & {4} & {2} & {-3}\end{array}\right|$$

    $$\Delta=-\left| \begin{array}{rrrr}{1} & {-2} & {3} & {2} \\ {0} & {3} & {-1} & {2} \\ {0} & {-1} & {-3} & {-4} \\ {0} & {2} & {5} & {-1}\end{array}\right|$$

    Далее получаем нули во втором столбце на месте элементов, стоящих под главной диагональю. И снова, если диагональный элемент будет равен $\pm 1$ , то вычисления будут более простыми. Для этого меняем местами вторую и третью строки (и при этом меняется на противоположный знак определителя):

    $$\Delta=\left| \begin{array}{rrrr}{1} & {-2} & {3} & {2} \\ {0} & {-1} & {-3} & {-4} \\ {0} & {3} & {-1} & {2} \\ {0} & {2} & {5} & {-1}\end{array}\right|$$

    Основной числовой характеристикой квадратной матрицы является ее определитель. Рассмотрим квадратную матрицу второго порядка

    Определителем или детерминантом второго порядка называется число, вычисленное по следующему правилу

    Например,

    Рассмотрим теперь квадратную матрицу третьего порядка

    .

    Определителем третьего порядка называется число, вычисленное по следующему правилу

    В целях запоминания сочетания слагаемых, входящих в выражения для определения определителя третьего порядка обычно используют правило Саррюса: первое из трех слагаемых, входящих в правую часть со знаком плюс есть произведение элементов, стоящих на главной диагонали матрицы , а каждое из двух других – произведение элементов, лежащих на параллели к этой диагонали, и элемента из противоположного угла матрицы.

    Последние три слагаемые, входящие со знаком минус определяются аналогичным образом, только относительно побочной диагонали.

    Пример:

    Основные свойства определителей матрицы

    1. Величина определителя не изменяется при транспонировании матрицы.

    2. При перестановки местами строк или столбцов матрицы, определитель меняет лишь знак, сохраняя абсолютную величину.

    3. Определитель, содержащий пропорциональные строки или столбцы равен нулю.

    4. Общий множитель элементов некоторой строки или столбца можно выносить за знак определителя.

    5. Если все элементы некоторой строки или столбца равны нулю, то и сам определитель равен нулю.

    6. Если к элементам отдельной строки или столбца определителя прибавить элементы другой строки или столбца, умноженные на произвольный невырожденный множитель , то величина определителя не изменится.

    Минором матрицы называется определитель, полученный вычеркиванием из квадратной матрицы одинакового числа столбцов и строк.

    Если все миноры порядка выше , которые можно составить из матрицы, равны нулю, а среди миноров порядка хотя бы один отличен от нуля, то число называется рангом этой матрицы.

    Алгебраическим дополнением элемента определителя порядка будем называть его минор порядка, получаемый вычеркиванием соответствующей строки и столбца, на пересечении которых, стоит элемент , взятый со знаком плюс, если сумма индексов равна четному числу и со знаком минус в противном случае.

    Таким образом

    ,

    где соответствующий минор порядка.

    Вычисление определителя матрицы путем разложения по элементам строки или столбца

    Определитель матрицы равен сумме произведений элементов какой- либо строки (какого- либо столбца) матрицы на соответствующие алгебраические дополнения элементов этой строки (этого столбца). При вычислении определителя матрицы таким способом следует руководствоваться следующим правилом: выбирать строку или столбец с наибольшим числом нулевых элементов. Этот прием позволяет значительно сократить объем вычислений.

    Пример: .

    При вычислении данного определителя, воспользовались приемом разложения его по элементам первого столбца. Как видно из приведенной формулы нет необходимости вычислять последний из определителей второго порядка, т.к. он умножается на ноль.

    Вычисление обратной матрицы

    При решении матричных уравнений широко используют обратную матрицу. Она в известной степени заменяет операцию деления, которая в явном виде в алгебре матриц отсутствует.

    Квадратные матрицы одинакового порядка, произведение которых дает единичную матрицу , называются взаимообратными или обратными. Обозначается обратная матрица и для нее справедливо

    Вычислить обратную матрицу можно только для такой матрицы , для которой .

    Классический алгоритм вычисления обратной матрицы

    1. Записывают матрицу , транспонированную к матрице .

    2. Заменяют каждый элемент матрицы определителем, полученным в результате вычеркивания строки и столбца, на пересечении которых расположен данный элемент.

    3. Этот определитель сопровождают знаком плюс, если сумма индексов элемента четная, и знаком минус – в противном случае.

    4. Делят полученную матрицу на определитель матрицы .

    ОПРЕДЕЛИТЕЛЬ
    или детерминант, - в математике запись чисел в виде квадратной таблицы, в соответствие которой ставится другое число ("значение" определителя). Очень часто под понятием "определитель" имеют в виду как значение определителя, так и форму его записи. Определители позволяют удобно записывать сложные выражения, возникающие, например, при решении линейных уравнений в аналитической геометрии и в математическом анализе. Открытие определителей приписывают японскому математику С. Кова (1683) и, независимо, Г. Лейбницу (1693). Современная теория восходит к работам Ж. Бине, О. Коши и К. Якоби в начале 19 в. Простейший определитель состоит из 4 чисел, называемых элементами и расположенных в виде 2-х строк и 2-х столбцов. О таком определителе говорят, что он 2-го порядка. Например, таков определитель

    Значение которого равно 2*5 - 3*1 (т.е. 10 - 3 или 7). В общем случае определитель 2-го порядка принято записывать в виде

    А его значение равно a1b2 - a2b1, где a и b - числа или функции. Определитель 3-го порядка состоит из 9 элементов, расположенных в виде 3-х строк и 3-х столбцов. В общем случае определитель n-го порядка состоит из n2 элементов, и обычно его записывают как


    Первый индекс каждого элемента указывает номер строки, второй - номер столбца, на пересечении которых стоит этот элемент, поэтому aij - элемент i-й строки и j-го столбца. Часто такой определитель записывают в виде |aij|. Один из методов вычисления определителя, почти всегда используемый при вычислении определителей высокого порядка, состоит в разложении по "минорам". Минором, соответствующим любому элементу определителя, называется определитель меньшего на 1 порядка, получаемый из исходного вычеркиванием строки и столбца, на пересечении которых стоит этот элемент. Например, минором, соответствующим элементу a2 из определителя


    "Алгебраическим дополнением" элемента называется его минор, взятый со знаком плюс, если сумма номеров строки и столбца, на пересечении которых стоит элемент, четна, и со знаком минус, если она нечетна. В приведенном выше примере элемент a2 состоит в 1-м столбце и во 2-й строке; сумма (1 + 2) нечетна, и поэтому алгебраическое дополнение элемента a2 равно его минору, взятому со знаком минус, т.е.

    Значение определителя равно сумме произведений элементов любой строки (или любого столбца) на их алгебраические дополнения. Например, определитель


    разложенный по первому столбцу, имеет вид


    а его разложение по второй строке, имеет вид


    Вычислив каждый минор и умножив его на коэффициент, нетрудно убедиться в том, что оба выражения совпадают. Значение определителя. Под значением определителя

    Принято понимать сумму всех произведений из n элементов, т.е.


    В этой формуле суммирование ведется по всем перестановкам j1, ј, jn чисел 1, 2, ј, n и перед членом ставится знак плюс, если перестановка четна, и минус, если эта перестановка нечетна. Такая сумма насчитывает ровно n! членов, половина которых берется со знаком плюс, половина - со знаком минус. Каждый член суммы содержит по одному члену из каждого столбца и каждой строки определителя. Можно доказать, что эта сумма совпадает с выражением, получаемым при разложении определителя по минорам.
    Свойства определителя. Среди наиболее важных свойств определителя назовем следующие. (i) Если все элементы любой строки (или любого столбца) равны нулю, то и значение определителя равно нулю:


    (ii) Если элементы двух строк (или двух столбцов) равны или пропорциональны, то значение определителя равно нулю:


    (iii) Значение определителя не изменится, если все его строки и столбцы поменять местами, т.е. записать первую строку в виде первого столбца, вторую строку - в виде второго столбца и т.д. (такая операция называется транспонированием). Например,


    (iv) Значение определителя не изменится, если к элементам одной строки (или столбца) прибавить соответствующие элементы другой строки (или столбца), умноженные на произвольный множитель. В следующем примере элементы второй строки умножаются на -2 и прибавляются к элементам первой строки:


    (v) Если поменять местами две строки (или два столбца), то определитель изменит знак:


    (vi) Если все элементы одной строки (или одного столбца) содержат общий множитель, то этот множитель можно вынести за знак определителя:


    Пример. Вычислим значение следующего определителя 4-го порядка:


    Прибавим к 1-й строке 4-ю строку:


    Вычтем 1-й столбец из 4-го столбца:


    Умножим 3-й столбец на 3 и вычтем из 4-го столбца:


    Если угодно, то строки и столбцы можно поменять местами:


    Разложим определитель по элементам четвертой строки. Три элемента этой строки равны нулю, ненулевой элемент стоит в третьем столбце, а поскольку сумма (3 + 4) нечетна, его алгебраическое дополнение имеет знак минус. В результате получаем:


    Минор можно разложить по элементам третьей строки: два ее элемента равны нулю, а отличный от нуля элемент стоит в третьем столбце; сумма (3 + 3) четна, поэтому предыдущее равенство можно продолжить:

    Применения. Решение системы уравнений


    можно получить, если первое уравнение умножить на b2, второе - на b1, а затем вычесть одно уравнение из другого. Проделав эти операции, мы получим

    Или, если


    то


    Такая запись решения с помощью определителей допускает обобщение на случай решения системы n линейных уравнений с n неизвестными; каждый определитель будет n-го порядка. Определителем системы линейных уравнений


    будет


    Заметим, что если D = 0, то уравнения либо несовместны, либо не являются независимыми. Поэтому предварительное вычисление определителя D позволяет проверить, разрешима ли система линейных уравнений.
    Определители в аналитической геометрии. Общее уравнение конического сечения представимо в виде

    Определитель


    называется дискриминантом. Если D = 0, то кривая вырождается в пару параллельных или пересекающихся прямых либо в точку (см. также КОНИЧЕСКИЕ СЕЧЕНИЯ). Другой пример: площадь треугольника A с вершинами в точках (обход - против часовой стрелки) (x1, y1), (x2, y2) и (x3, y3) определяется выражением


    Связь определителей с матрицами. Матрицей называется запись массива чисел в виде прямоугольной таблицы. Определители связаны с квадратными матрицами; например, определитель матрицы


    Если A, B и С - квадратные матрицы и, то |A|*|B| = |C|.
    См. также АЛГЕБРА АБСТРАКТНАЯ .
    Якобиан. Если x = f (u, v), y = g (u, v) - преобразование координат, то определитель

    Называется якобианом или определителем Якоби этого преобразования. Если J не равен 0 в некоторой точке, то в ее окрестности уравнения преобразования можно однозначно разрешить относительно u и v, представив их как функции от x и y.
    См. МАТЕМАТИЧЕСКИЙ АНАЛИЗ .

    Энциклопедия Кольера. - Открытое общество . 2000 .

    Синонимы :

    Смотреть что такое "ОПРЕДЕЛИТЕЛЬ" в других словарях:

      ОПРЕДЕЛИТЕЛЬ, определителя, муж. (книжн.). 1. То, что определяет, выражает собою что нибудь. 2. Книга, служащая для справок при определении чего нибудь (научн.). Определитель растений. Определитель грибов. 3. Выражение, составляемое из… … Толковый словарь Ушакова

      - (детерминант) составленное по определенному правилу из n2 чисел математическое выражение, применяемое при решении и исследовании систем алгебраических уравнений 1 й степени. Число n называется порядком определителя. Так, определитель 2 го порядка … Большой Энциклопедический словарь

      Опознаватель, гессиан, минор, детерминант Словарь русских синонимов. определитель сущ., кол во синонимов: 10 автоопределитель (1) … Словарь синонимов

      ОПРЕДЕЛИТЕЛЬ - (детерминант) составленное по определённому правилу из n2 чисел математическое выражение, применяемое при решении и исследовании систем алгебраических уравнений 1 й степени. Число п называется порядком определителя. Так, определитель 2 го порядка … Большая политехническая энциклопедия

      ОПРЕДЕЛИТЕЛЬ, я, муж. 1. Устройство для определения чего н., а также вообще то, с помощью чего можно что н. точно определить, установить. Телефон с определителем номера. О. ритма. 2. Книга для справок при определении чего н. (спец.). О. растений … Толковый словарь Ожегова

      - (детерминант) квадратнойматрицы А = ||aij|| порядка n, detA многочлен … Физическая энциклопедия

      определитель - — Тематики электросвязь, основные понятия EN determinant … Справочник технического переводчика

      У этого термина существуют и другие значения, см. Определитель (значения). Определитель (или детерминант) одно из основных понятий линейной алгебры. Определитель матрицы является многочленом от элементов квадратной матрицы (то есть такой, у … Википедия

      определитель - 3.4.6 определитель (auxiliary): Код вспомогательного класса УДК. Источник … Словарь-справочник терминов нормативно-технической документации

      Я; м. 1. Книжн. То, чем определяется, обусловливается что л. Звук может быть определителем скорости. Главным определителем времени является движение Солнца в космическом пространстве. 2. Спец. Руководство (книга или таблица) для определения чего… … Энциклопедический словарь

    Книги

    • Определитель покрытосеменных древесных растений по плодам и семенам , Синицын Евгений Михайлович. Определитель состоит из двух частей. Первая часть представляет собой таблицу для определения родов, а вторая включает таблицы для определения видов покрытосеменных древесных растений по…

    Постановка задачи

    Задание подразумевает знакомство пользователя с основными понятиями численных методов, такими как определитель и обратная матрица , и различными способами их вычислений. В данном теоретическом отчете простым и доступным языком сначала вводятся основные понятия и определения, на основании которых проводится дальнейшее исследование. Пользователь может не иметь специальных знаний в области численных методов и линейной алгебры , но с легкостью сможет воспользоваться результатами данной работы. Для наглядности приведена программа вычисления определителя матрицы несколькими методами, написанная на языке программирования C++. Программа используется как лабораторный стенд для создания иллюстраций к отчету. А также проводится исследование методов для решения систем линейных алгебраических уравнений . Доказывается бесполезность вычисления обратной матрицы, поэтому в работе приводится более оптимальные способы решения уравнений не вычисляя ее. Рассказывается почему существует такое количество различных методов вычисления определителей и обратных матриц и разбираются их недостатки. Также рассматриваются погрешности при вычислении определителя и оценивается достигнутая точность. Помимо русских терминов в работе используются и их английские эквиваленты для понимания, под какими названиями искать численные процедуры в библиотеках и что означают их параметры.

    Основные определения и простейшие свойства

    Определитель

    Введем определение определителя квадратной матрицы любого порядка. Это определение будет рекуррентным , то есть чтобы установить, что такое определитель матрицы порядка , нужно уже знать, что такое определитель матрицы порядка . Отметим также, что определитель существует только у квадратных матриц.

    Определитель квадратной матрицы будем обозначать или det .

    Определение 1. Определителем квадратной матрицы второго порядка называется число .

    Определителем квадратной матрицы порядка , называется число

    где - определитель матрицы порядка , полученной из матрицы вычеркиванием первой строки и столбца с номером .

    Для наглядности запишем, как можно вычислить определитель матрицы четвертого порядка:

    Замечание. Реальное вычисление определителей для матриц выше третьего порядка на основе определения используется в исключительных случаях. Как правило, вычисление ведется по другим алгоритмам, которые будут рассмотрены позже и которые требуют меньше вычислительной работы.

    Замечание. В определении 1 было бы точнее сказать, что определитель есть функция, определенная на множестве квадратных матриц порядка и принимающая значения в множестве чисел.

    Замечание. В литературе вместо термина "определитель" используется также термин "детерминант", имеющий тот же самый смысл. От слова "детерминант" и появилось обозначение det .

    Рассмотрим некоторые свойства определителей, которые сформулируем в виде утверждений.

    Утверждение 1. При транспонировании матрицы определитель не меняется, то есть .

    Утверждение 2. Определитель произведения квадратных матриц равен произведению определителей сомножителей, то есть .

    Утверждение 3. Если в матрице поменять местами две строки, то ее определитель сменит знак.

    Утверждение 4. Если матрица имеет две одинаковые строки, то ее определитель равен нулю.

    В дальнейшем нам потребуется складывать строки и умножать строку на число. Эти действия над строками (столбцами) мы будем выполнять так же, как действия над матрицами-строками (матрицами-столбцами), то есть поэлементно. Результатом будет служить строка (столбец), как правило, не совпадающая со строками исходной матрицы. При наличии операций сложения строк (столбцов) и умножения их на число мы можем говорить и о линейных комбинациях строк (столбцов), то есть суммах с числовыми коэффициентами.

    Утверждение 5. Если строку матрицы умножить на число , то ее определитель умножится на это число.

    Утверждение 6. Если матрица содержит нулевую строку, то ее определитель равен нулю.

    Утверждение 7. Если одна из строк матрицы равна другой, умноженной на число (строки пропорциональны), то определитель матрицы равен нулю.

    Утверждение 8. Пусть в матрице i-ая строка имеет вид . Тогда , где матрица получается из матрицы заменой i-ой строки на строку , а матрица - заменой i-ой строки на строку .

    Утверждение 9. Если к одной из строк матрицы добавить другую, умноженную на число, то определитель матрицы не изменится.

    Утверждение 10. Если одна из строк матрицы является линейной комбинацией других ее строк, то определитель матрицы равен нулю.

    Определение 2. Алгебраическим дополнением к элементу матрицы называется число, равное , где - определитель матрицы, полученной из матрицы вычеркиванием i-ой строки и j-ого столбца. Алгебраическое дополнение к элементу матрицы обозначается .

    Пример. Пусть . Тогда

    Замечание. Используя алгебраические дополнения, определение 1 определителя можно записать так:

    Утверждение 11. Разложение определителя по произвольной строке.

    Для определителя матрицы справедлива формула

    Пример. Вычислите .

    Решение. Воспользуемся разложением по третьей строке, так выгоднее, поскольку в третьей строке два числа из трех - нули. Получим

    Утверждение 12. Для квадратной матрицы порядка при выполнено соотношение .

    Утверждение 13. Все свойства определителя, сформулированные для строк (утверждения 1 - 11), справедливы и для столбцов, в частности, справедливо разложение определителя по j-ому столбцу и равенство при .

    Утверждение 14. Определитель треугольной матрицы равен произведению элементов ее главной диагонали.

    Следствие. Определитель единичной матрицы равен единице, .

    Вывод. Перечисленные выше свойства позволяют находить определители матриц достаточно высоких порядков при сравнительно небольшом объеме вычислений. Алгоритм вычислений следующий.

    Алгоритм создания нулей в столбце. Пусть требуется вычислить определитель порядка . Если , то поменяем местами первую строку и любую другую, в которой первый элемент не нуль. В результате определитель , будет равен определителю новой матрицы с противоположным знаком. Если же первый элемент каждой строки равен нулю, то матрица имеет нулевой столбец и по утверждениям 1, 13 ее определитель равен нулю.

    Итак, считаем, что уже в исходной матрице . Первую строку оставляем без изменений. Прибавим ко второй строке первую строку, умноженную на число . Тогда первый элемент второй строки будет равен .

    Остальные элементы новой второй строки обозначим , . Определитель новой матрицы по утверждению 9 равен . Первую строку умножим на число и прибавим к третьей. Первый элемент новой третьей строки будет равен

    Остальные элементы новой третьей строки обозначим , . Определитель новой матрицы по утверждению 9 равен .

    Процесс получения нулей вместо первых элементов строк продолжим дальше. Наконец, первую строку умножим на число и прибавим к последней строке. В результате получается матрица, обозначим ее , которая имеет вид

    причем . Для вычисления определителя матрицы используем разложение по первому столбцу

    Так как , то

    В правой части стоит определитель матрицы порядка . К нему применим тот же алгоритм, и вычисление определителя матрицы сведется к вычислению определителя матрицы порядка . Процесс повторяем до тех пор, пока не дойдем до определителя второго порядка, который вычисляется по определению.

    Если матрица не обладает какими-то специфическими свойствами, то заметно уменьшить объем вычислений по сравнению с предложенным алгоритмом не удается. Еще одна хорошая сторона этого алгоритма - по нему легко составить программу для компьютера для вычисления определителей матриц больших порядков. В стандартных программах вычисления определителей используется этот алгоритм с не принципиальными изменениями, связанными с минимизацией влияния ошибок округления и погрешностей входных данных при вычислениях компьютера.

    Пример. Вычислите определитель матрицы .

    Решение. Первую строку оставляем без изменения. Ко второй строке прибавляем первую, умноженную на число :

    Определитель не меняется. К третьей строке прибавляем первую, умноженную на число :

    Определитель не меняется. К четвертой строке прибавляем первую, умноженную на число :

    Определитель не меняется. В результате получаем

    По тому же алгоритму считаем определитель матрицы порядка 3, стоящий справа. Первую строку оставляем без изменений, ко второй строке прибавляем первую, умноженную на число :

    К третьей строке прибавляем первую, умноженную на число :

    В результате получаем

    Ответ. .

    Замечание. Хотя при вычислениях использовались дроби, результат оказался целым числом. Действительно, используя свойства определителей и то, что исходные числа - целые, операций с дробями можно было бы избежать. Но в инженерной практике числа крайне редко бывают целыми. Поэтому, как правило, элементы определителя будут десятичными дробями и применять какие-то ухищрения для упрощения вычислений нецелесообразно.

    Обратная матрица

    Определение 3. Матрица называется обратной матрицей для квадратной матрицы , если .

    Из определения следует, что обратная матрица будет квадратной матрицей того же порядка, что и матрица (иначе одно из произведений или было бы не определено).

    Обратная матрица для матрицы обозначается . Таким образом, если существует, то .

    Из определения обратной матрицы следует, что матрица является обратной для матрицы , то есть . Про матрицы и можно говорить, что они обратны друг другу или взаимно обратны.

    Если определитель матрицы равен нулю, то обратная к ней не существует.

    Так как для нахождения обратной матрицы важно, равен ли определитель марицы нулю или нет, то введем следующие определения.

    Определение 4. Квадратную матрицу назовем вырожденной или особенной матрицей , если , и невырожденной или неособенной матрицей , если .

    Утверждение. Если обратная матрица существует, то она единственна.

    Утверждение. Если квадратная матрица является невырожденной, то обратная для нее существует и (1) где - алгебраические дополнения к элементам .

    Теорема. Обратная матрица для квадратной матрицы существует тогда и только тогда, когда матрица - невырожденная, обратная матрица единственна, и справедлива формула (1).

    Замечание. Следует обратить особое внимание на места, занимаемые алгебраическими дополнениями в формуле обратной матрицы: первый индекс показывает номер столбца , а второй - номер строки , в которые нужно записать вычисленное алгебраическое дополнение.

    Пример. .

    Решение. Находим определитель

    Так как , то матрица - невырожденная, и обратная для нее существует. Находим алгебраические дополнения:

    Составляем обратную матрицу, размещая найденные алгебраические дополнения так, чтобы первый индекс соответствовал столбцу, а второй - строке: (2)

    Полученная матрица (2) и служит ответом к задаче.

    Замечание. В предыдущем примере было бы точнее ответ записать так:
    (3)

    Однако запись (2) более компактна и с ней удобнее проводить дальнейшие вычисления, если таковые потребуются. Поэтому запись ответа в виде (2) предпочтительнее, если элементы матриц - целые числа. И наоборот, если элементы матрицы - десятичные дроби, то обратную матрицу лучше записать без множителя впереди.

    Замечание. При нахождении обратной матрицы приходится выполнять довольно много вычислений и необычно правило расстановки алгебраических дополнений в итоговой матрице. Поэтому велика вероятность ошибки. Чтобы избежать ошибок следует делать проверку: вычислить произведение исходной матрицы на итоговую в том или ином порядке. Если в результате получится единичная матрица, то обратная матрица найдена правильно. В противном случае нужно искать ошибку.

    Пример. Найдите обратную матрицу для матрицы .

    Решение. - существует.

    Ответ: .

    Вывод. Нахождение обратной матрицы по формуле (1) требует слишком много вычислений. Для матриц четвертого порядка и выше это неприемлемо. Реальный алгоритм нахождения обратной матрицы будет приведен позже.

    Вычисление определителя и обратной матрицы с помощью метода Гаусса

    Метод Гаусса можно использовать для нахождения определителя и обратной матрицы .

    Именно, определитель матрицы равен det .

    Обратная матрица находится решением систем линейных уравнений методом исключения Гаусса:

    Где есть j-тый столбец единичной матрицы , - искомый вектор.

    Полученные векторы решений - образуют, очевидно, столбцов матрицы , поскольку .

    Формулы для определителя

    1. Если матрица невырожденная, то и (произведение ведущих элементов).