Буквопечатающий аппарат и многократное телеграфирование. Раздел I Назначение,структура Устройство и принцип работы телеграфной установки

Исключительно важное значение для обеспечения управления войсками, как в прошлом, так и в современных условиях, имеет телеграфная связь. Она характеризуется простотой технической реализации и обслуживания, высокой помехозащищённостью (особенно слуховой телеграф) и возможностью документирования сообщений. На основе первичной сети связи в системе связи создаются вторичные сети связи, одной из которых является сеть телеграфной связи.

Принцип работы аппаратуры ТТ

1.1 Принципы телеграфной связи

Телеграфией называется область электросвязи, занимающаяся передачей дискретных сообщений. Дискретные сообщения представляют собой последовательности символов (буквы, цифры, знаки и т.п.). Совокупность применяемых символов называют алфавитом сообщений. Для передачи символов по каналам связи используют дискретные электрические сигналы. Дискретным называется сигнал в котором регистрируется конечное число значений его параметров, например, напряжений. Каждому символу ставится в соответствие определенная комбинация сигналов. Систему соответствий между символами алфавита сообщений и дискретными сигналами называют кодом. Совокупность дискретных сигналов, соответствующих определенному символу, называется кодовой комбинацией. Символы алфавита могут быть пронумерованы натуральным рядом чисел, например, а =1, б = 2, в = 3.... Каждое число удобно представить в двоичной форме, т.е. а - 001,

б - 010, в - 011,... . Удобство представления чисел в двоичной форме состоит в том, что логическим "1" и "0" легко поставить в соответствие простые электрические сигналы. Из рис.1 видно, что "1" может быть поставлена в соответствие токовая (положительная) посылка", а "0" - бестоковая или отрицательная посылка.

Под посылкой понимается элементарный сигнал длительностью t . Сигналы, состоящие из однополярных, рис.1а, илидвухполярных,рис.1б, посылок называются сигналами постоянного тока. Минимально необходимое число посылок в кодовой комбинации - n - определяется объемом алфавита - (количеством символов) - N . и находится с помощью выражения

n = log 2 N

Например, для передачи 32 букв алфавита число n будет равно

n = log 2 32= 5. В современных телеграфных аппаратах, состоящих на вооружении войск связи, применен код, использующий однополярную последовательность посылок постоянного тока с числом импульсов в кодовой комбинации =5. Так, например, букве "Р" русского алфавита соответствует кодовая комбинация вида 01010, букве "Я" - 11101 и т.д.

В дискретных каналах под скоростью передачи двоичной информации подразумевается количество двоичных импульсов, передаваемых за 1 сек. Различают скорость передачи информации R (информационную скорость) и скорость телеграфирования В .

В реальных условиях как правило, в состав кодовой комбинации, кроме информационных посылок, т.е. тех, с помощью которых непосредственно кодируются символы, входят также служебные посылки, необходимые для обеспечения работы оконечных телеграфных устройств (ОТУ). Так, в старт-стопных телеграфных аппаратах это стартовая - бестоковая

и стоповая - токовая посылки. Таким образом, в целом кодовая комбинация содержит семь двоичных импульсов, см. рис.2, из которых пять - информационных и два служебных.

За единицу информации принята одна двоичная посылка ("0"или"1"),называемая бит.

Скоростью телеграфирования (В) называется количество единичных элементов (информационных и служебных посылок) передаваемых за 1 сек. За единицу измерения величины В принят 1 бод, предполагающий передачу 1 двоичного импульса за 1 сек.

Информационной скоростью (R) называется количество информационных посылок, передаваемых за 1 сек. За единицу измерения величины R принят 1 бит/с. Следовательно, если одна семиэлементная кодовая комбинация с выхода телеграфного аппарата, передается за 1 сек, то В = 7 бод, а R= 5 бит/с, если за 1 сек. передается, например, десять кодовых комбинаций, скорости передачи составляют соответственно 70 бод и 50 бит/с.

Скорость передачи однозначно связана с частотой следования двоичных импульсов - F . Как известно, если период одного полного синусоидального колебания -Т составляет1 сек. частота его F = 1Гц. На этом же периоде, см. рис 3, могут быть уложены два двоичных импульса (положительной и отрицательной полярностей) с длительностями, равными Т/2.

В 1872 году французский изобретатель Жан Бодо сконструировал телеграфный аппарат многократного действия, который имел возможность передавать по одному проводу два и более сообщения в одну сторону. Аппарат Бодо и созданные по его принципу получили название стартстопных. Кроме того, Бодо создал весьма удачный телеграфный код (Код Бодо), который впоследствии был воспринят повсеместно и получил наименование Международный телеграфный код № 1 (ITA1). Модифицированная версия МТК № 1 получила название МТК № 2 (ITA2). В СССР на основе ITA2 был разработан телеграфный код МТК-2. Дальнейшие модификации конструкции стартстопного телеграфного аппарата, предложенного Бодо, привели к созданию телепринтеров (телетайпов).В честь Бодо была названа единица скорости передачи информации - бод.

Телекс Siemens T100

К 1930 году была создана конструкция стартстопного телеграфного аппарата, оснащенного дисковым номеронабирателем телефонного типа (телетайп). Этот тип телеграфного аппарата в числе прочего позволял персонифицировать абонентов телеграфной сети и осуществлять быстрое их соединение. Практически одновременно, в Германии и Великобритании были созданы национальные сети абонентского телеграфа, получившие название Telex (TELEgraph + EXchange). Несколько позже в США также была создана национальная сеть абонентского телеграфирования, подобная Telex, которая получила наименование TWX (Telegraph Wide area eXchange). Сети международного абонентского телеграфирования постоянно расширялись и к 1970 году сеть Telex объединяла абонентов более чем 100 стран мира. Только в восьмидесятых годах благодаря появлению на рынке недорогих и практичных факсимильных машин сеть абонентского телеграфирования стала сдавать позиции в пользу факсимильной связи.

Телеграф в новом веке

В наши дни возможности обмена сообщениями по сети Telex сохранена во многом благодаря электронной почте. В России телеграфная связь существует и поныне, телеграфные сообщения передаются и принимаются при помощи специальных устройств - телеграфных модемов, сопряженных в узлах электрической связи с персональными компьютерами операторов. Тем не менее в некоторых странах национальные операторы сочли телеграф устаревшим видом связи и свернули все операции по отправлению и доставке телеграмм. В Нидерландах телеграфная связь прекратила работу в 2004 году. В январе 2006 года старейший американский национальный оператор Western Union объявил о полном прекращении обслуживания населения по отправке и доставлению телеграфных сообщений. В то же время в Канаде, Бельгии, Германии, Швеции, Японии некоторые компании все ещё поддерживают сервис по отправлению и доставке традиционных телеграфных сообщений.



Телеграфная связь имеет несколько разновидностей: собственно телеграфную связь, использующую для кодирования информации азбуку Морзе, телетайпную, дейтефонную и телекс (рис. 5).


Рис. 5. Разновидности телеграфной связи

Телетайпная связь

Телетайпная связь появилась позднее телеграфной, в конце XIX века, с изобретением буквопечатающих телеграфных аппаратов - телетайпов . Большинство телетайпных аппаратов имеют алфавитно-цифровую клавиатуру, печатающее устройство, перфоратор ленты и считыватель с перфоленты.

Ввод информации в телетайп может осуществляться с клавиатуры или с перфоленты. Перфорация ленты (нанесение на нее кодов в виде определенным образом расположенных отверстий) может осуществляться на самом телетайпном аппарате заранее, в автономном режиме. Поскольку ручной ввод информации с клавиатуры не обеспечивает высокой скорости передачи, реализуемой системой, предпочтительнее автоматизированный ввод. Телетайпная связь применяется до сих пор в учреждениях и на предприятиях. Но теперь передаваемая на телетайп информация может вводиться прямо из компьютера, оснащенного модемом. При передаче информация регистрируется как получателем, так и отправителем на бумажный носитель или на перфоленту.

Дейтефонная связь

При наличии аппаратуры согласования (модема ) в качестве канала связи для телетайпной аппаратуры может служить не только телеграфный, но и телефонный канал. Передачу документированной текстовой информации по телефонным каналам часто называют дейтефонной связью .

Телетайпы могут соединяться как непосредственно между собой, так и через коммутатор. Непосредственное соединение телетайпных аппаратов целесообразно для организации внутрифирменной связи. При передаче информации на значительные расстояния телеграфную аппаратуру включают в единую государственную систему абонентского телеграфирования. Этой сетью пользуются в основном министерства, промышленные предприятия, транспортные, финансовые учреждения и воинские части.

Телекс

Для передачи сообщений в другие страны используется международный телеграф - телекс. Эту сеть широко используют коммерческие учреждения, банки, биржи, страховые компании, информационные агентства, частные и государственные фирмы. Документы, переданные по этим сетям, обладают юридической силой, то есть признаются во всех странах.

Система «Телекс» имеет компьютерный вариант - Telex Net, предоставляющий пользователям дополнительные возможности. К ним относятся:

· работа в локальных вычислительных сетях;

· диалог;

· автоматическая передача данных с компьютера;

Существенным недостатком телеграфной связи является низкая достоверность передачи информации. Поэтому при передаче информации по телеграфным каналам связи принимаются специальные меры по повышению достоверности.

В частности, промышленность выпускает аппаратуру, оснащенную устройствами защиты от ошибок.

Сейчас все виды телеграфной связи постепенно вытесняются факсимильной связью .

Факсимильная связь

Предшественницей факсимильной связи была фототелеграфная связь. Она использовалась для передачи полутоновых изображений.

Назначение факсимильной связи - передача на расстояние информации в виде текстов, чертежей, рисунков, схем, фотоснимков и т. п. По существу, факсимильный способ передачи информации заключается в дистанционном копировании документов. Оперативность и простота в эксплуатации – неоспоримые преимущества факса.

В основу факсимильной связи положен метод передачи последовательности электрических сигналов, характеризующих яркость элементов передаваемого документа. Передаваемое изображение раскладывается на элементы. Процесс разложения документа на элементы называется разверткой, а просмотр и считывание этих элементов - сканированием.

Для организации факсимильной связи могут использоваться телефонные каналы, а также телеграфные и радиоканалы связи. Важное достоинство факсимильной связи - полная автоматизация передачи. Скорость и достоверность передачи информации довольно высоки.

Если компьютер снабжен факс-модемом, передаваемая информация может вводиться в память компьютера.

Выпускаемые в настоящее время факсимильные аппараты отличаются способом воспроизведения изображения, разрешающей способностью и другими параметрами.


В фотографических факсимильных аппаратах печать документа у принимающего абонента производится на фотографическую бумагу. Использование этих аппаратов обходится дороже, но они лучше других передают полутона и имеют высокую разрешающую способность (до 10 точек на мм 2).

Электромеханические

термографического термобумага. электрографические и струйные

лазерные

Передача документов по факсу производится в следующей последовательности:

Ø вставить подготовленный для передачи документ лицевой стороной вниз в приемный лоток факса;

Ø нажать команду SP-PHONE или просто поднять трубку;

Ø набрать номер факса абонента;

Ø после ответа абонента или, если факс абонента стоит в автоматическом режиме приема, услышав специфический сигнал-гудок, нажать кнопку START.

Ø Положить трубку, если вы использовали ее для переговоров.

Прием сообщений по факсу:

Ø Услышав сигнал, снять трубку;

Ø Нажать кнопку START;

Ø После получения сообщения подтвердить прием, положить трубку.

После передачи факсимильного сообщения многие факсы передают автоматический отчет-подтверждение о том, что сообщение передано и получено по назначению. Кроме того, всегда можно распечатать полный отчет о полученных и переданных сообщениях.

При передаче конфиденциальных документов по факсу на вашем и принимающем аппарате должны быть идентификационные коды для предотвращения несанкционированного доступа и получения секретной информации. Если коды передающего и принимающего аппаратов не совпадают, передача не состоится.

Выше описаны только самые простые функции телефаксов. Более сложные и дорогие факсы обеспечивают множество дополнительных функций таких как:

· Отложенная передача, которая позволяет, подготовив документ к передаче, отправить его в заданное время, например, ночью, когда тарифы на междугородные переговоры значительно ниже;

· Память на несколько десятков страниц, в которую принимаются факсы, если бумага вынута или закончилась, с последующей распечаткой, в эту же память можно загрузить документы для последующей их посылки в указанное вами время или рассылки нескольким адресатам;

· Отклонение ненужных вызовов – игнорирование вызовов, сделанных с телефонов, не содержащихся в памяти быстрого набора.

Например, аппараты фирмы XEROX или CANON с лазерным печатающим устройством, используют обычную бумагу, имеют все описанные выше возможности, а так же множество других. Память вмещает 35 страниц с возможностью расширения до 180. Лоток на 250 листов практически исключает возможность израсходования всей бумаги даже при большом объеме поступивших факсов. Кроме того можно заложить в память для отложенной рассылки до 20 различных документов, каждый со своим списком рассылки.

Если факс не работает или работает неустойчиво, в ряде случаев вы можете установить причину неполадок и, возможно, сами устраните возможные проблемы:

· Прежде всего проверьте, горит ли индикатор включения (POWER). Возможно, факс был случайно выключен или отключилось электричество (у некоторых моделей факсов даже при отключении от электросети будет раздаваться гудок);

· Проверьте состояние телефонной линии: попробуйте позвонить куда-нибудь. Если телефон не работает, то факс тоже не будет работать;

· Попросите абонента набрать номер вашего факса и после этого «стартуйте»;

· Проверьте, есть ли в телефаксе бумага. Когда она кончается, загорается индикатор NO PAPER (или PAPER OUT).

Электромеханические факсимильные аппараты часто называют штриховыми за то, что они не передают полутонов. Их отличает простота конструкции и использование обычной бумаги. Разрешающая способность этих аппаратов в пределах 4-6 точек на мм 2 .

Среди современных факсимильных аппаратов чаще всего встречаются аппараты термографического типа. Они недороги, но имеют достаточно хорошие характеристики (7-10 точек на мм 2 ,20-40 уровней серого). Для них используется специальная термобумага . Примерно к этому же классу относятся электрографические и струйные факсимильные аппараты. Их важная особенность - использование обычной бумаги.

Самые лучшие характеристики имеют лазерные факсимильные аппараты: до 15 точек на мм 2 , 64 уровней серого, но пока эти аппараты достаточно дороги.

Сервисные возможности современных факсимильных аппаратов:

· автоподача документов и бумаги;

· режим копирования документов;

· возможность подключения к компьютеру;

· запоминание телефонных номеров и текста документа, на случай отсутствия или неожиданного окончания бумаги;

· жидкокристаллический дисплей, отображающий режимы работы;

· режим «полинга» (приглашение нужной станции к передаче сообщения);

Чтобы расширить объем сервисных услуг, создаются факсимильные сервис-системы. Система общероссийского расширенного факс-сервиса охватывает все крупнейшие предприятия более чем в 500 городах России, стран СНГ и дальнего зарубежья. Эта система обеспечивает своим абонентам:

· доступ к системе с любого факс-аппарата или персонального компьютера для отправки документов;

· доставку документов немедленно или с задержкой;

· конфиденциальность передаваемой информации;

· выдачу квитанции с указанием результата выполнения команды абонента (доставлен документ или не доставлен) с указанием даты и времени, а также причины, по которой документ не был доставлен.

За рубежом факсимильные системы более развиты, чем у нас. В большинстве гостиниц, аэропортов, в фойе многих учреждений и других общественных местах установлены необслуживаемые кабины с факсимильными аппаратами. Они работают по тому же принципу, что и таксофоны.

Выпускаются телефонные факсимильные приставки, которые используются для передачи рукописных сообщений и выполняемых от руки схем, подписей. Такая приставка - это электронный блокнот, подключаемый к телефону. При передаче факса абонент специальным пером пишет или рисует на блокноте, текст или схема автоматически кодируются и посылаются принимающему абоненту. Важно, что таким образом передается и подпись ответственного лица.

Сотовая связь

Сотовая связь - один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть . Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично перекрываются и вместе образуют сеть. На идеальной (ровной и без застройки) поверхности зона покрытия одной БС представляет собой круг, поэтому составленная из них сеть имеет вид сот с шестиугольными ячейками (сотами).

Сотовая связь Сетисотовойсвязи
Сотовая связь Сотовая связь

Примечательно, что в английском варианте связь называется «ячеистой» или «клеточной» (cellular), что не учитывает шестиугольности сот.

Сеть составляют разнесённые в пространстве приёмопередатчики, работающие в одном и том же частотном диапазоне, и коммутирующее оборудование, позволяющее определять текущее местоположение подвижных абонентов и обеспечивать непрерывность связи при перемещении абонента из зоны действия одного приёмопередатчика в зону действия другого.

Первое использование подвижной телефонной радиосвязи в США относится к 1921 г.: полиция Детройта использовала одностороннюю диспетчерскую связь в диапазоне 2 МГц для передачи информации от центрального передатчика к приёмникам, установленным на автомашинах. В 1933 г. полиция Нью-Йорка начала использовать систему двусторонней подвижной телефонной радиосвязи также в диапазоне 2 МГц. В 1934 г. Федеральная комиссия связи США выделила для телефонной радиосвязи 4 канала в диапазоне 30…40 МГц, и в 1940 г. телефонной радиосвязью пользовались уже около 10 тысяч полицейских автомашин. Во всех этих системах использовалась амплитудная модуляция. Частотная модуляция начала применяться с 1940 г. и к 1946 г. полностью вытеснила амплитудную. Первый общественный подвижный радиотелефон появился в 1946 г. (Сент-Луис, США; фирма Bell Telephone Laboratories), в нём использовался диапазон 150 МГц. В 1955 г. начала работать 11-канальная система в диапазоне 150 МГц, а в 1956 г. - 12-канальная система в диапазоне 450 МГц. Обе эти системы были симплексными, и в них использовалась ручная коммутация. Автоматические дуплексные системы начали работать соответственно в 1964 г. (150 МГц) и в 1969 г. (450 МГц).

В СССР В 1957 г. московский инженер Л. И. Куприянович создал опытный образец носимого автоматического дуплексного мобильного радиотелефона ЛК-1 и базовую станцию к нему. Мобильный радиотелефон весил около трех килограммов и имел радиус действия 20-30 км. В 1958 году Куприянович создает усовершенствованные модели аппарата весом 0,5 кг и размером с папиросную коробку. В 60-х гг Христо Бочваров в Болгарии демонстрирует свой опытный образец карманного мобильного радиотелефона. На выставке «Интероргтехника-66» Болгария представляет комплект для организации местной мобильной связи из карманных мобильных телефонов РАТ-0,5 и АТРТ-0,5 и базовой станции РАТЦ-10, обеспечивающей подключение 10 абонентов.

В конце 50-х гг в СССР начинается разработка системы автомобильного радиотелефона «Алтай», введенная в опытную эксплуатацию в 1963 г. Система «Алтай» первоначально работала на частоте 150 МГц. В 1970 г. система «Алтай» работала в 30 городах СССР и для нее был выделен диапазон 330 МГц.

Аналогичным образом, с естественными отличиями и в меньших масштабах, развивалась ситуация и в других странах. Так, в Норвегии общественная телефонная радиосвязь использовалась в качестве морской мобильной связи с 1931 г.; в 1955 г. в стране было 27 береговых радиостанций. Наземная мобильная связь начала развиваться после второй мировой войны в виде частных сетей с ручной коммутацией. Таким образом, к 1970 г. подвижная телефонная радиосвязь, с одной стороны, уже получила достаточно широкое распространение, но с другой - явно не успевала за быстро растущими потребностями, при ограниченном числе каналов в жёстко определённых полосах частот. Выход был найден в виде системы сотовой связи, что позволило резко увеличить ёмкость за счёт повторного использования частот в системе с ячеистой структурой.

Конечно, как это обычно бывает в жизни, отдельные элементы системы сотовой связи существовали и раньше. В частности, некоторое подобие сотовой системы использовалось в 1949 г. в Детройте (США) диспетчерской службой такси - с повторным использованием частот в разных ячейках при ручном переключении каналов пользователями в оговоренных заранее местах. Однако архитектура той системы, которая сегодня известна как система сотовой связи, была изложена только в техническом докладе компании Bell System, представленном в Федеральную комиссию связи США в декабре 1971 г. И с этого времени начинается развитие собственно сотовой связи, которое стало поистине триумфальным с 1985 г., в последние десять с небольшим лет.

В 1974 г. Федеральная комиссия связи США приняла решение о выделении для сотовой связи полосы частот в 40 МГц в диапазоне 800 МГц; в 1986 г. к ней было добавлено ещё 10 МГц в том же диапазоне. В 1978 г. в Чикаго начались испытания первой опытной системы сотовой связи на 2 тыс. абонентов. Поэтому 1978 год можно считать годом начала практического применения сотовой связи. Первая автоматическая коммерческая система сотовой связи была введена в эксплуатацию также в Чикаго в октябре 1983 г. компанией American Telephone and Telegraph (AT&T). В Канаде сотовая связь используется с 1978 г., в Японии - с 1979 г., в Скандинавских странах (Дания, Норвегия, Швеция, Финляндия) - с 1981 г., в Испании и Англии - с 1982 г. По состоянию на июль 1997 г. сотовая связь работала более чем в 140 странах всех континентов, обслуживая более 150 млн абонентов.

Первой коммерчески успешной сотовой сетью была финская сеть Autoradiopuhelin (ARP). Это название переводится на русский как «Автомобильный радиотелефон». Запущенная в 1971 г., она достигла 100%-ного покрытия территории Финляндии в 1978. Размер соты был равен около 30 км, в 1986 г. в ней было более 30 тыс. абонентов. Работала она на частоте 150 МГц.

Телеграфные аппараты, линии, источники тока составляют основные элементы телеграфной связи

Все телеграфные сообщения передаются с определенной скоростью. Скорость телеграфирования измеряется числом элементарных телеграфных посылок, переданных в 1 с. Единицей скорости телеграфирования является Бод (введена в 1927 г.).

Если, например, на какой-либо линии связи передается 50 элементарных телеграфных посылок в секунду, то скорость телеграфирования равна 50 Бод. В этом случае продолжительность одной элементарной посылки равна 1/50 = 0,02 с = 20 мс.

Приемником телеграфного аппарата является электромагнит, через обмотки которого протекает ток, поступающий с линии. С помощью электромагнита преобразуется энергия электрического тока в механическую энергию движения регистрирующего устройства телеграфного аппарата.

Электромагнит состоит из обмотки, сердечника и якоря. Ток от линии протекает по обмотке, в результате образуется магнитное поле, воздействующее на якорь, который притягивается к сердечнику, поворачиваясь вокруг оси.

При прекращении токовой телеграфной посылки поле в сердечнике пропадает, и якорь под действием пружины возвращается в исходное положение.

Линейное реле применяется для более надежной работы телеграфного аппарата при меньших токах, его включают между линией связи и электромагнитом телеграфного аппарата.

Различают методы телеграфирования по характеру посылок тока при передаче кодовых комбинаций от одной станции к другой и по способу согласования ритмов работы приемного и передающего аппаратов.

Кодовые комбинации могут передаваться посылками постоянного или переменного тока.

При телеграфировании постоянным током различают однополюсное и двуполюсное телеграфирование. Когда в линию передаются посылки тока одного направления (плюсовые или минусовые), телеграфирование называется однополюсным и пауза между посылками соответствует отсутствию тока в линии. Этот метод называют также телеграфированием с пассивной паузой.

Когда рабочая посылка передается током одного направления (например, плюс), а пауза током другого направления (например, минус), такое телеграфирование называется двуполюсным или телеграфированием с активной паузой.

При однополюсном телеграфировании используют одну линейную батарею на одной станции. При двухполюсном телеграфировании необходимы две линейные батареи, каждая из которых подключается к линии через передатчик разными полюсами. Если передатчик и приемник работают синхронно и синфазно, то такой метод телеграфирования называется синхронным.

В настоящее время используется стартстопный метод телеграфирования. Происхождение этого названия объясняется тем, что распределитель начинает работать только по сигналу "старт" и после каждого цикла останавливается по сигналу "стоп". Для запуска и остановки распределителя при стартстопном методе по линии кроме информационных посылок необходимо передавать еще две служебные посылки - стартовую и стоповую.



Синхронный метод в комбинации со стартстопным методом называется синхронно-стартстопным. Этот метод позволяет осуществлять телеграфирование по одной линии с нескольких стартстоп-ных аппаратов с помощью синхронного распределителя.

При телеграфировании постоянным током дальность ограничивается расстоянием, при котором на приемной стороне линии амплитуда посылки постоянного тока достаточна для срабатывания приемного электромагнита или реле. Для увеличения дальности телеграфирования необходимо усилить напряжение постоянного тока или включить трансляцию импульсов. Однако усиление напряжения постоянного тока сопряжено со значительными техническими трудностями, а использование трансляций ограничивается сопровождающими искажениями импульсов. Передача нескольких сообщений посылками постоянного тока требует для каждого сообщения отдельной линии связи.

Увеличение дальности телеграфирования и повышение эффективности использования (уплотнение) линии связи - легко решаются с помощью частотного телеграфирования (телеграфирования переменным током). Дальность телеграфирования при этом не ограничена, поскольку легко организовать усиление сигналов переменного тока. Благодаря уплотнению линий связи можно передавать одновременно несколько десятков телеграфных сообщений.

Дальностью телеграфирования называют наибольшее расстояние между двумя станциями, на котором можно вести надежную передачу сообщений без применения каких-либо промежуточных усилительных устройств.

При факсимильной телеграфной связи передается неподвижное изображение по каналам электрической связи. Источником сообщения, подлежащего передаче, может быть текстовой, графический или фотографический материал. Особенностью факсимильной связи является яркость элементарных площадок и их плотность на поверхности передаваемого изображения, называемого оригиналом. На приемной стороне должно быть воспроизведено распределение элементов оригинала с заданной точностью. Полученное на приемном конце изображение называют копией.

Абонентский телеграф применяется для организации временных прямых телеграфных связей между различными абонентами. В состав станционного оборудования входят коммутационные устройства и релейные панели, содержащие телеграфные и телефонные реле, которые обеспечивают преобразование и транслирование сигналов и необходимое управление коммутационными процессами. По способу коммутации станции подразделяются на два вида: ручные станции - (АТР) и автоматические (АТА).

Станция АТР представляет собой комплекс коммутационного оборудования, в котором все соединения осуществляются телеграфистом-оператором с помощью ручных шнуровых пар. Такие станции остались в сети в небольшом количестве и в дальнейшем будут полностью заменены автоматическими станциями.

Абоненты, включенные в станцию АТА, сами управляют процессом установления соединения с помощью номеронабирателя. Автоматические соединения возможны как с абонентом, включенным в станцию АТА, так и с абонентом, включенным в станцию АТР, путем вызова телеграфиста-оператора этой станции.

По типу применяемого коммутационного оборудования АТА подразделяются на декадно-шаговые и координатные.

По емкости декадно-шаговые станции можно подразделить на три основных типа:

I тип - АТА-57 емкостью до 1000 абонентских установок;

II тип - АТА-57 емкостью до 300 абонентских установок;

III тип - АТА-М емкостью до 20 абонентских установок.

По емкости координатные станции подразделяются на два типа:

I тип - станции большой емкости АТА-К, к которым можно подключить до 500 абонентских установок;

II тип - станции малой емкости АТА-МК, к которым можно подключить до 20 абонентских установок.

Декадно-шаговые и координатные станции большой емкости предназначены для установки в крупных телеграфных узлах с большим числом абонентских установок и значительным транзитным обменом, а станции небольшой емкости типа АТА-М и АТА-МК устанавливаются в небольших телеграфных узлах.

Оборудование станций АТА построено таким образом, что позволяет на магистральном участке использовать совместно каналы для сети абонентского телеграфа (АТ) и прямых соединений (ПС). Вместе с тем из-за эксплуатационных различий коммутационное оборудование автоматических станций (АТА) и автоматических станций прямых соединений (АПС) строится таким образом, чтобы непосредственное соединение абонентов этих станций между собой было технически невозможным.

Коммутационные станции прямых соединений (АПС) предназначены для организации временных прямых телеграфных связей между оконечными пунктами телеграфной сети.

Кроме перечисленных в состав телеграфной сети страны входит сеть некоммутируемых (арендованных) каналов.

В соответствии с разнообразными требованиями пользователей в настоящее время на телеграфных сетях применяются три метода коммутации: коммутации каналов (кк), сообщений (кс) и пакетов (кп).

При коммутации каналов между вызывающим и вызываемым абонентами с помощью узлов коммутации каналов организуется сквозной канал, по которому передается информация.

В данном методе коммутации процедура установления соединений начинается с посылки вызова. Если станция готова к приему номера, то она передает вызывающему абоненту сигнал приглашения к набору номера. Абонент передает на станцию номер вызываемого абонента.

Станция коммутации, получив номер вызываемого абонента, определяет направление смежной станции и передает ей полученный номер. Входящая станция отыскивает линию вызываемого абонента и если она свободна, прокладывает тракт соединения между абонентами. Сигнал установления соединения транслируется вызывающему абоненту. По образованному тракту сообщения передаются как в одну, так и в другую сторону. После окончания двустороннего обмена сообщениями один из абонентов передает сигнал отбоя и происходит разъединение установленного соединения.

Коммутацией сообщений называется такой метод распределения информации, при котором на сети передаются отдельные сообщения, снабженные заголовками, включающими адрес получателя и служебную информацию. На каждом узле сообщение записывается в запоминающее устройство, адрес анализируется и выбирается дальнейшее направление передачи. Если в данном направлении передачи есть свободный канал, то сообщение передается немедленно, в противном случае сообщение ставится в очередь, в которой оно будет находиться до момента освобождения канала.

Абонент передает в центр коммутации сообщение (ЦКС) запрос на передачу сообщения. Если ЦКС готов к приему сообщения, то он посылает вызывающему абоненту сигнал приглашения к передаче сообщения. Абонент передает сообщение в центр. Полностью приняв сообщение от абонента, ЦКС передает ему сигнал подтверждения. На конечных участках передача сообщений осуществляется с низкой скоростью. На дискретных каналах между ЦКС скорость передачи, как правило выше, что показано изменением длительности передачи сообщения. В каждом центре производится запись полученного сообщения в накопитель, на магнитных лентах или магнитных дисках. Заголовок сообщения анализируется и определяется направление последующей передачи. Все поступающие сообщения распределяются по очередям на исходящие направления. При освобождении канала сообщение передается на смежный центр коммутации, где процесс полностью повторяется.

Коммутацией пакетов называется такой способ распределения информации, при котором сообщения делятся на отдельные блоки, каждый из которых снабжен специальным заголовком. В центре коммутации блоки обрабатываются и записываются в оперативное запоминающее устройство (ОЗУ). Заголовок анализируется и определяется направление последующей передачи пакета. Если канал в этом направлении свободен, пакет передается, если занят, пакет ставится в очередь на передачу.

Различают два метода коммутации пакетов: дейтаграммный и метод передачи пакетов по виртуальному каналу. При дейтограммном методе каждый пакет передается независимо от остальных пакетов того же сообщения, причем разные пакеты одного сообщения передаются по разным маршрутам. Поэтому пакеты поступают в приемный узел коммутации в произвольном порядке с разным временем задержки. В приемном узле восстанавливается истинный порядок следования пакетов в сообщении, заголовки пакетов стираются, и восстановленное сообщение передается получателю.

При передаче пакетов по виртуальным каналам вначале передается служебный пакет "Запрос вызова", прокладывающий в сети единственный маршрут, по которому будут передаваться все остальные пакеты этого сообщения. За данным маршрутом закрепляется номер установленного логического канала. В процессе передачи каждому пакету приписывается номер логического канала, в соответствии с которым каждый, участвующий в организации виртуального канала, определяет направление дальнейшей передачи пакетов. Все пакеты одного сообщения последовательно передаются друг за другом с точными одинаковыми задержками. В узле назначения все пакеты собираются и восстановленное сообщение передается получателю. После доставки всего сообщения один из абонентов передает служебный пакет "запрос разъединения", который проходя через узлы коммутации, уничтожает записанный в них номер виртуального канала, приводящие к его разрушению.

Буквопечатающий аппарат и многократное телеграфирование

Огромным шагом вперед было изобретение многократного телеграфирования, при котором для нескольких аппаратов достаточно одной линии связи. При этом особое устройство - распределитель подключает поочередно аппараты к линии. В зависимости от того, сколько телеграмм позволяют передать и принять одновременно эти аппараты, они называются двукратными, четырехкратными и т. д.

В 1863 году русский изобретатель Владимир Струбинский разработал конструкцию многократного телеграфного аппарата, в котором через особое устройство в линию связи включалось два передатчика. Этот аппарат мог бы найти применение на телеграфных линиях того времени. Однако это замечательное русское изобретение было похоронено. Запечатанный пакет со схемой и описанием изобретения был обнаружен в Центральном историческом архиве в Ленинграде только в 1948 году. Царские чиновники не удосужились даже ознакомиться с предложением Струбинского. Когда же в 1874 году за границей появился многократный телеграфный аппарат Бодо, то Россия вынуждена была платить за него золотом.

Аппарат Бодо позволял осуществлять многократное использование линий связи. Но работал он еще не вполне удовлетворительно. Русские ученые и изобретатели (П. А. Азбукин, А. П. Яковлев и другие) сделали в этом аппарате ряд усовершенствований. Большие заслуги в дальнейшем использовании принципа многократного телеграфирования принадлежат советским инженерам лауреатам Сталинской премии А. Д. Игнатьеву, Л. П. Турину и Г. П. Козлову, разработавшим электронный распределитель и создавшим мощный (девятикратный) буквопечатающий телеграфный аппарат.

Принцип многократного телеграфирования очень прост. Для этого в линию связи включается так называемый распределитель, в котором имеется небольшой электродвигатель, непрерывно вращающий контактную щетку. Щетка перемещается по двум металлическим концентрическим кольцам. Внутреннее кольцо - сплошное и соединено с линией связи. Наружное кольцо разделено на несколько изолированных друг от друга частей (секторов), к которым присоединяются проводники от телеграфных аппаратов.

Совершая круговое движение, контактная щетка последовательно соединяет с внутренним кольцом то один, то другой сектор, подключая каждый раз к линии связи соответствующий телеграфный аппарат.

Наиболее распространенным из многократных телеграфных аппаратов является так называемый двукратный аппарат Бодо-дуплекс. Дуплексная система телеграфирования так устроена, что позволяет организовать в одном телеграфном проводе четыре канала: два передающих и два приемных. При этом передача телеграмм не мешает приему телеграмм, который одновременно производится по тому же проводу.

Рассмотрим процесс передачи телеграммы с первой (передающей) станции на вторую (приемную). Устанавливаемый на каждой станции дуплексный аппарат имеет две клавиатуры (для передачи телеграмм) и два приемника (для приема телеграмм). Поэтому на нем работают сразу четыре телеграфиста. За каждый оборот контрольной щетки на распределителе передающей станции поочередно присоединяются к линии связи клавиатуры № 1 и № 2. Одновременно на приемной станции таким же распределителем и в те же моменты к линии связи подключаются приемники № 1 и № 2. Когда на передающей станции контактная щетка передвигается по первому сектору, она соединяет с линией связи клавиатуру № 1, а когда передвигается по второму сектору - клавиатуру № 2. В эти моменты и ведется передача двух телеграмм. На второй станции благодаря наличию дуплексной схемы при передаче телеграмм происходит тот же процесс, но в обратном направлении. Таким образом, по одной линии связи передаются четыре телеграммы: две в одну сторону и две в другую сторону.

Конечно, на самом деле устройство аппарата Бодо значительно сложнее, чем здесь рассказано. Ведь щетки распределителей аппаратов должны двигаться строго согласованно. Если щетка в аппарате, устанавливаемом на одной станции, передвигается по сектору № 1, то и в аппарате другой станции в тот же момент времени щетка также должна передвигаться по сектору № 1.

Все эти уточнения (коррекция) работы двух аппаратов производятся с помощью специальных схем с реле и электромагнитами и системы механических деталей.

В аппарате Бодо применен пятиклавишный передатчик, подобный тому, который был изобретен еще Шиллингом. Когда клавиши не нажаты, от них в линию все время посылаются импульсы тока отрицательной полярности (от «минуса» электрической батареи). При нажатии на клавишу полярность посылаемых импульсов изменяется, так как контакт нажатой клавиши отключается от минуса первой батареи и подключается к плюсу другой батареи. Из комбинаций положительных и отрицательных импульсов тока и составляются знаки телеграммы: буквы, цифры и знаки препинания.

Каждая клавиша имеет два положения («нажата», «не нажата»). Пять клавиш могут дать 22 2 2 2=32 различные, неповторяющиеся комбинации. Например: нажата только первая клавиша, или: нажата третья и четвертая клавиша, и т. д. Практически можно использовать только 31 комбинацию, так как отпадает «холостая» комбинация, когда ни одна клавиша не нажата, т. е. когда в линию идут только одни «минусовые» импульсы тока. Телеграмма же может содержать 57 разных знаков (32 буквы алфавита, 10 цифр, знаки препинания и вспомогательные знаки). Чтобы передать такое количество знаков, нужно было бы не пять, а шесть клавиш. Но на шести клавишах трудно было бы работать телеграфисту. Поэтому придумали еще одно устройство, благодаря которому одна и та же комбинация положительных и отрицательных импульсов тока используется дважды. Желая передать буквы, телеграфист набирает специальную комбинацию - переход на буквы, а если нужно передать цифру, то другую комбинацию - переход на цифры.

В приемнике так называемое регистровое устройство реагирует на эти нажатия, и на ленте отпечатываются то буквы, то цифры.

Работа телеграфиста пятиклавишного многократного аппарата требует не только знаний, но и большого навыка, гибкости пальцев и даже некоторого искусства. Телеграфист, нажимая на клавиши, действует двумя пальцами левой руки и тремя пальцами правой. Буквы и цифры отпечатываются на ленте аппарата приемной станции с помощью типового колеса, устроенного по принципу колеса аппарата Якоби (рис. 9).

Рис. 9. Типовое колесо.

На ребре типового колеса нанесены буквы как русского, так и латинского алфавитов, а это очень удобно для обмена телеграммами с нашими союзными республиками и с другими странами.

Для контроля за правильностью передачи телеграмм в цепь передающей клавиатуры включается контрольный аппарат. Тогда перед телеграфистом, передающим телеграмму, на бумажной ленте отпечатывается та же телеграмма.

Аппарат Бодо работает по стальным проводам воздушной линии на расстояние до 600 километров. Для увеличения дальности действия устраиваются промежуточные станции (трансляции).

Многократные телеграфные аппараты позволяют работать с большой скоростью и обладают большой мощностью. Так, например, на аппарате М-44 работает один телеграфист, который передает (или принимает) только 400 слов в час. На телеграфной же станции, где установлен многократный аппарат наиболее распространенного типа «двукратный Бодо-дуплекс», передача (как и прием) ведется каждым телеграфистом со скоростью 900 слов в час. Работают на этом аппарате, как мы уже говорили, одновременно четыре телеграфиста, из которых двое передают телеграммы, а двое принимают. Таким образом, за один час они передают и принимают 3600 слов. Наибольшей же мощностью обладает упомянутый выше советский девятикратный телеграфный аппарат. На каждой телеграфной станции, оборудованной девятикратным аппаратом, одновременно работает девять телеграфистов на передаче и девять телеграфистов на приеме. За один час эти 18 телеграфистов успевают передавать и принимать до 20 тысяч слов в час.

Наличие нескольких каналов для передачи и приема телеграмм - большое достоинство системы многократного телеграфирования. Но у аппаратов этой системы есть и недостатки: громоздкость, сложность устройства и регулировки и т. п. Кроме того, для обслуживания таких аппаратов нужны специально обученные телеграфисты. От этих недостатков свободен другой советский буквопечатающий телеграфный аппарат СТ-35.

Из книги История государственного управления в России автора Щепетев Василий Иванович

Аппарат управления Княжеская администрация состояла из чиновников, которых можно разбить на две группы. К первой группе принадлежали чиновники, которые относились к органам государственного управления. Вторая группа состояла из личных слуг князя, исполнявших

Из книги Внешняя разведка СССР автора Колпакиди Александр Иванович

Центральный аппарат 26 сентября 1936 года Генеральный комиссар госбезопасности Генрих Ягода был освобожден от должности наркома ВД СССР и назначен наркомом связи СССР. На его место был назначен Николай Иванович Ежов, который имел установку полностью «перетряхнуть»

Из книги Путин, Буш и война в Ираке автора Млечин Леонид Михайлович

ПРОВЕРИТЬ АППАРАТ Когда одного из помощников Линдона Джонсона застукали за тем, как он выписывал пропуск в Белый дом в мужском туалете, ввели правило - всех сотрудников Белого дома проверяет Федеральное бюро расследований. Проверку проходят все, кроме президента,

Из книги История Средних веков. Том 1 [В двух томах. Под общей редакцией С. Д. Сказкина] автора Сказкин Сергей Данилович

Государственный аппарат В X-XI вв. система государственного управления существенно усложнилась. Сложилась громоздкая иерархия должностей. Количество ведомств возросло до шестидесяти. Финансовое управление было сосредоточено в трех из них, главным из которых было

Из книги Ленин. Соблазнение России автора Млечин Леонид Михайлович

Государственный аппарат Ленин не только взял власть в стране с самой большой в мире территорией (а население России - 165 миллионов человек - в два раза превышало население Германии), но и затеял фантастическое дело - пытался своими декретами и решениями коренным образом

Из книги Преданная демократия. СССР и неформалы (1986-1989 г.г.) автора Шубин Александр Владленович

АТАКА НА АППАРАТ 6 ДЕКАБРЯ секретарь комсомольской организации биофака МГУ В. Тимаков выступил на комсомольской конференции с предложением объявить Всесоюзную дискуссию по поводу путей перестройки ВЛКСМ. Вспоминает В. Гурболиков: «Когда Исаев зачитал текст выступления

Из книги Египет Рамсесов автора Монтэ Пьер

I. Административный аппарат В Египте с самых древних времен была очень грамотная администрация. Уже в эпоху I династии писцы оттискивали на глиняных пробках кувшинов свои имена и титулы с помощью цилиндрических печатей. Все, кого мы знаем благодаря статуе, стеле или

Из книги Энциклопедия Третьего Рейха автора Воропаев Сергей

Аграрполитишер аппарат (Agrarpolitischer Apparat; AA), отдел нацистской партии, ведавший вопросами сельского

Из книги Всемирная история. Том 4. Эллинистический период автора Бадак Александр Николаевич

Государственный аппарат Персидская держава представляла собой непрочный конгломерат народностей и племен, которые существенно различались по уровню своего развития, формам хозяйственной жизни, языку и культуре. В западной части империи господствовали

Из книги Россия: народ и империя, 1552–1917 автора Хоскинг Джеффри

Новый государственный аппарат Для того чтобы покрывать огромные расходы государства, Петр I решительно упростил налоговую систему, введя подушную подать. Для более строгого контроля за налогоплательщиками была разработана сложная система, поделившая все население на

автора

Из книги Всеобщая история государства и права. Том 2 автора Омельченко Олег Анатольевич

Из книги Философия истории автора Семенов Юрий Иванович

4.2. КАТЕГОРИАЛЬНЫЙ АППАРАТ 4.2.1. Вводные замечания При изложении своего понимания всемирной истории я буду пользоваться целой системой понятий. Часть этих понятий заимствована мною из категориального аппарата исторического материализм. При этом некоторые из них в

Из книги ВЫПУСК I. ПРОБЛЕМА И ПОНЯТИЙНЫЙ АППАРАТ. ВОЗНИКНОВЕНИЕ ЧЕЛОВЕЧЕСКОГО ОБЩЕСТВА автора Семенов Юрий Иванович

1.2. Категориальный аппарат 1.2.1. Вводные замечания Теоретическое рассмотрение любого предмета предполагает, как известно, использование специального понятийного аппарата. Этот аппарат может стать подлинным орудием теоретического познания лишь при том условии, если

Из книги Другой взгляд на Сталина автора Мартенс Людо

Партийный аппарат в деревне Чтобы понять линию большевистской партии во время коллективизации, необходимо иметь в виду, что к 1930 году партийный и государственный аппарат в селе еще был крайне слаб – вопреки образу «ужасной тоталитарной машины», создаваемому

Из книги Телеграф и телефон автора Беликов Борис Степанович

Стартстопный аппарат СТ-35 Аппарат СТ-35 создан советскими инженерами в 1935 году. Он является наиболее распространенным, массовым аппаратом на наших телеграфных линиях (рис. 10). Рис. 10. Ленточный стартстопный телеграфный аппарат СТ-35.Аппарат СТ-35 невелик по размерам. Его

Телеграф – набор методов, позволяющих передать текстовые символы, письменность, сообщения на дальние дистанции. Предполагается знание обеими сторонами регламента обмена информацией, определённых правил расшифровки. Например, железнодорожник понимает сигналы семафора, водители – светофора. Сие простейшие примеры принципа действия телеграфа. Исторически люди применяли дым, маяки, отражённый зеркалом свет.

Термин

Слова введены французским изобретателем семафора, Клодом Шаппом (семафор, телеграф). Ныне термин привычно обозначает электрическую разновидность устройств. Беспроводная телеграфия подразумевает модуляцию несущей, противопоставляясь используемой ранее Герцом технике наблюдения искрового промежутка. Противореча Шаппу, Морзе указывал уместность применения термина, обозначая системы передающие/записывающие послания. Дым тогда следует считать семафором.

Переданное послание стали называть телеграммой. Отдельной строкой стоит Телекс, дошедший сетью.

История

Согласно терминологии Морзе, телеграф изобрёл Павел Шиллинг. Ранние модели посылали сигналы точка-тире, символы печатной машинки.

Оптический телеграф

Первый оптический телеграф построил Роберт Хук (1684 год) для Королевского общества Великобритании. Эксперименты продолжил сэр Ричард Лоуэлл Еджворт (1767 год). Семафорная сеть Шаппа 1793 года проработала полвека. Немало популярности изобретения поспособствовала Французская революция, требуя сократить время передачи правительственных донесений. 2 марта 1791 года, в 11 утра, отправлено первое сообщение, преодолевшее 16 км: «Продолжив, скоро будешь овеян славой».

Незамысловатая конструкция содержала наблюдательный телескоп, пару черно-белых панелей. Оператор, листая книгу кодов, выписывал буквы. Год спустя Клоду поручили проложить линию Париж-Лиль длиной 230 км. Задумка призвана упростить управление австрийской войной. В 1794 году линия принесла весть: капитулировал Конде-сюр-л`Эско. Затрачен 1 час времени.

Пруссы потрясены возможностями новой системы, построив собственные линии (1830-е годы). Работоспособность телеграфа задавалась погодными условиями, временем суток. Скорость доставки составила два-три слова ежеминутно. Последний береговой вариант похоронен Швецией (1880). Франция продолжала использование изобретения, доверив семафор морякам, желающим передать весточку берегу. Несомненны достоинства методики:

  1. Отсутствие затрат энергии, включая солнечную. Система успешно противостоит облачной погоде.
  2. Скорость даст 100% очков форы гонцам (пловцам).

Электрический телеграф

Первую идею утилизации полезных свойств электричества обнародовал журнал Скотс мэгэзин (1753 год). Энтузиасты предложили выделить каждой букве алфавита индивидуальный провод (тогда использовали шёлковые нити). Источником электричества выступил статический генератор. Ранние приёмные устройства использовали явление взаимодействия зарядов. Затея, лишённая перспектив, осталась собирать пыль архива.

Джордж-Луи ле Саг построил (1774) двадцать лет спустя согласно заметке первую электростатическую модель. 26 проводов позволяли читать буквы людям, занявшим соседние помещения.

Новый толчок развитию направления дало изобретение Вольтой электролитических источников тока. Немецкий учёный Томас фон Зёммеринг (1809) усовершенствовал конструкцию математика Франциско Сальва Кампилло. Обе вмещали 35 параллельных проводов, продолжая идею, описанную выше. Новинка шутя покрывала дистанцию пару-тройку километров.

Приёмная сторона, снабжённая электролитическими колбами, наблюдала пузырьки водорода. Номер реторты соответствовал букве, цифре. Визуальное наблюдение помогало несущему наряд оператору зафиксировать переданное пузырьками сообщение. Битрейт оставлял желать лучшего.

Годную модель построил английский изобретатель Франсис Роналдс (1816). Фамильное поместье (Хаммерсмит Молл) украсила канава протяжённостью 175 ярдов. Отрезок длиной 8 миль снаружи шёл воздушным путём. Представленное адмиралтейству изобретение оценили, как «полностью бесполезное». Письменная работа Роналдса Описание телеграфа и некоторых других электрических аппаратов считается безусловно первым манускриптом, касающимся темы. Попутно Франсис рассмотрел ретардацию сигналов, спровоцированную неизвестной тогда науке индукцией.

Питер наносит ответный удар

Русский дипломат Павел Шиллинг продемонстрировал (1832) дистанционную передачу сообщений меж соседними помещениями. Примечательным моментом стало использование шифрования символов: попытка уменьшить количество соединительных проводов. Роль приёмников сыграли 6 мультипликаторов, соединительных линий стало 8:

  1. Сигнальная.
  2. Возвратная.
  3. 6 информационных.

Постепенно изобретатель догадался буквенный код заменить цифровым. Новая редакция прибора содержала 2 медных жилы. Британское правительство (1836) пыталось выкупить патент. Изобретатель отвергает зарубежное предложение, принимая условия Николая I. Длина очередной воздвигнутой линии составила 5 километров, соединив здание адмиралтейства, царский дворец Петергофа, морскую базу Кронштадт для служебной переписки. Проект окончился смертью изобретателя.

Интересно! Ранее (1821) Аднрэ-Мари Ампер высказывал идею реализации телеграфа посредством поворотных рамок, управляющих гальванометром Швейггера. По словам учёного, он экспериментально проверял собственные идеи. Питер Барлоу (1824) повторил шаги, проделанные Ампером, сочтя достигнутую максимальную дистанцию 200 метров неперспективной.

Карл Фридрих Гаусс и Вильгельм Вебер создали (1833, Гёттинген) первый электромагнитный телеграф, объединивший обсерваторию и Институт физики, разделённые пространством протяжённостью 1 км. Шиллинг применял поворотные рамки, наподобие конструкции Швейггера. Немецкие учёные задействовали настоящее электромагнитное реле, образованное катушкой проволоки. Элементами кода стали положительное, отрицательное направления течения тока. Постепенно передачу информации стали кодировать импульсами, повысив скорость. Спонсированные Александром фон Гумбольдтом учёные продолжили работу, первая рабочая модель обустроена Карлом Августом Штайнелем (Мюнхен – 1835-1836 г.г., затем – первая немецкая железная дорога).

Коммерческий успех

Американцы вели разработки параллельно. Некоторые упрекают Дэвида Альтера в плагиате. Доктор ответил репортёру: «Затрудняюсь заметить связь меж изобретением Морзе и телеграфной связью Элдертона. Профессор также вероятно ничего не слышал про местные средства передачи сообщений».

Самюэль Морзе запатентовал (1837) пишущий электрический телеграф. Помощник инженера, Альфред Вэйл разработал регистратор: стилус, управляемый магнитом. Совместно искатели сгенерировали новый код. 11 января 1838 года Морзе выслал сообщение, преодолевшее 3 км провода.

Это интересно! Интернет полон заблуждений, будто первой пташкой стала библейская фраза WHAT HATH GOD WROUGHT? Указанное послание датируется 1844 годом. Тогда длина телеграфной сети составила 44 км.

Май 1837 года подарил планете первый платный сервис отправки сообщений. Вильям Фотергиль Кук и Чарльз Витстон запатентовали шестипроводной игольчатый телеграф. Система могла включать произвольное количество заострённых стальных стержней. Изобретатели рекомендовали использовать 5 штук. Четырёхигольная модель соединила два района Лондона. 25 июля 1837 года прошла успешная демонстрация. Гаусс пробивался спонсированными деньгами – Кук и Витстон заработали, продав запатентованные модели.

Заложенный подземный кабель вскорости приказал долго жить: пробой изоляции. Изделие заменили единственной жилой, лишённой покрытия. Прибор модернизировали. После сокращения осталось 2 иглы, длина кода возросла. Следующая инсталляция (Слау, 1843 год) содержала двухпроводной кабель, обходясь единственным острием. Первый коммерческий успех привлёк внимание энтузиастов, обеспечив отрасль стабильным приростом инноваций.

Азбука Морзе

CША новый код завоёвывал 20 лет, 24 октября 1861 года прикончив Пони Экспресс путём сквозного пересечения континента линией. Вскорости каждый почтовый офис обзавёлся экземпляром новой системы оказания услуг. Коммерсанты видели широкий круг задач:

  1. Повысить скорость передачи.
  2. Снизить стоимость.
  3. Уменьшить объем ручного труда.

Уволить телеграфисток помог метод АВС Витстона (1840). Изобретатель расположил буквы вокруг циферблата часов. Приёмная игла выбирала нужную. Клиенту-получателю оставалось записать результат. Скорость достигла лимита 15 слов/мин.

Новые свершения

Александр Бейн запатентовал (Эдинбург, 1846) химический телеграф. Ток двигал стальной стилус по бумаге, пропитанной смесью нитрата аммония и ферроцианида калия. Полученные голубые маркеры повторяли переданный код Морзе. Максимальная скорость составила 1000 слов/мин. Послание расшифровывал оператор. Новинке пришёл конец: разъярённая группа Морзе отсудила патент.

Параллельно Роял Эрл Хаус разработал печатную систему, содержащую клавиатуру. Приёмная сторона автоматически формировала бумажное сообщение. Заявленная скорость составила 2600 слов/час. Существовала паровая версия 1852 года.

Идею подхватил Дэвид Эдвард Хагис. Клавиатура, содержащая 26 символов, завоевала всеобщее признание. Техника отличалась завидной аккуратностью. Следующая новинка заставила подождать, выявив всеобщее удовлетворение существующим положением дел. Эмиль Бодо (1874) внедрил собственную кодировку. Символ передавался положением пяти переключателей. Скорость составила 30 слов/мин.

Окончательно автоматизировал процесс Чарльз Витстон, изобретя перфоленту. Устройство, бесхитростно названное Стик Панч, напоминало печатную машинку. Оператор садился, набивал послание, вправлял ленту, передавал приёмной стороне. Скорость достигла уровня 70 слов/мин.

Принтеры-телексы

Печатные устройства запоздали. Первой удачной версией считают изобретение Фредерика Крида (1924). Инженер выпустил ряд инновационных механизмов, включая перфоратор ленты. Движителем выступил сжатый воздух. Автоматизированная система кропала 200 слов ежеминутно, составив конкуренцию химической модели XIX века. Работник компании Крида, Дональд Мюррей, модифицировал код Бодо, взяв соответствующий патент. Вскорости модель P3 (1927) завоевала почтовые отделения. Система заинтересовала издание Дэйли Мэйл, вышел адаптированный вариант перфоратора.

Усовершенствованные системы компании Телетайп захватили аэропорты, разнося служебные сообщения, прогнозы погоды. К 1938 году сеть охватила США полностью, исключая штаты Мэн, Южная Дакота, Нью-Хэмпшир. Крид оккупировал Британию, Сименс – Германию. Адресат выбирался согласно стандартному телефонному номеру (импульсный набор). Новый класс устройств назвали телексами.

Посредством мультиплексирования одна линия вмещала максимум 25 машин. Телекс стал надёжным средством дальней связи.

Атлантический кабель

Идея соединить материки родилась параллельно изобретениям Генри, Витстона. Родоначальником считают Морзе (1840). Учёные искали подходящий изолятор, способный защитить медную жилу. Шотландский хирург Вильям Монтгомери предложил (1842) гуттаперчу – липучий сок малазийского растения. Фарадей и Витстон немедля подтвердили изоляционные качества материала. Было решено выполнить прокладку линии Дувр-Кале. Тестирование (1849) прошло успешно на базе реки Рейн.

Первые шаги: зарождение идеи

Джон Ваткинс Бретт получил одобрение Луи-Филиппа проложить линию, объединяющую Англию и Францию. Работы окончились к 1850 году. Трассу довели до Ирландии. Параллельно епископ Джон Маллок, глава Романской католический церкви Ньюфаундленда провел линию лесом, снабдив епархию связью. Следующий проект последователей Христа пересек залив святого Лаврентия. Потуги священника вдохновили Фредерика Ньютона Гисборна. Изобретатель получил (1851) гранд легитимной власти острова, сформировав компанию, высказал идею Цирусу Весту Филду. Так родилась идея покорения Атлантики.

Выработка методики укладки

В 40-е годы XIX века отдельные энтузиасты лелеяли надежду соединить берега Америки, Европы медной жилой. Среди прочего, Эдвард Торнтон, Алонцо Джэкман. Цирус взял консультацию у Морзе. Затем заинтересовал лейтенанта Мэттью Мори, сведущего в океанографии. После Филд оповестил компании Ньюфаундленда, США, Великобритании, предложив организовать океанический телеграф.

Следующий проект (1854) преследовал смелую мысль – покорить Атлантику. Затейники быстро осознали нехватку финансирования. Потребовалось организовать общество, собирающее средства. Первым шагом стала попытка (1855) покорить залив святого Лаврентия. Барк исправно клал кабель, помешал шторм: пришлось срочно резать, спасая жизни людей. Следующим летом пароход успешно завершил задуманное. Филд, назначив главным инженером Чарльза Тильстона Брайта, решился.

Трансатлантическая компания

6 ноября 1856 года предприниматели создали Атлантическую телеграфную компанию (Лондон), занимавшуюся конструированием подводной магистрали, призванной приблизить столь дальние берега США хотя бы с точки зрения скорости передачи новостей. Попытка 1858 года увенчалась успехом. Линию сломали лица, передававшие сообщения.

Километр кабеля, образованного семью медными жилами, весил 26 кг. Покрытый тремя слоями гуттаперчи – почти втрое тяжелее. Изолятор извне защищал конопляный чулок (пенька), броней послужила тесная спираль 18 витых стальных жил. Итоговый вес составил 550 кг/км. Производством занялись две мануфактуры:

  1. Гласс, Эллиот и Ко (Гринвич).
  2. Р.С. Ньювал и Ко (Биркенхэд).

Позже вскрылось: отдельные секции намотаны в противоположных направлениях. Указанное отступление от технологии намеренно преувеличивалось перед общественностью после поломки кабеля, вызванной превышением допустимого электрического напряжения. Правительство Англии выделило 1400 фунтов стерлингов, предоставив корабль. Следующий (после первой неудачи) сбор средств длился 8 лет. 28 июля 1866 года сервис заработал. Общая хронология:


Это интересно! Электрическое разрушение первого удачно проложенного кабеля произвёл Вилдман Вайтхаус. Учёный муж попробовал значительно поднять напряжение, полагая повысить скорость. Публике объявили: виноваты производитель, склады, третьи лица.

Личное мнение перевесило интеллект

Потуги инженеров привлекли внимание учёных, возжелавших исследовать проблемы передачи сигнала вдоль длинных линий. Проще говоря, мужей науки попросту заставили дать ответ. Проблема усугублялась разногласиями 2 главных инженеров, разделённых океаном, на предмет того, как должен работать кабель:

  1. Лорд Кельвин, ухвативший западный конец, считал недопустимым повышать напряжение. Вместо этого предлагалась импульсная передача с детектированием по переднему фронту вытекающего тока. Дифференциальный гальванометр-регистратор Кельвин изобрёл ранее.
  2. Занимавший восточный конец Вайтхаус имел медицинское образование. Знания электричества оставляли желать лучшего. Медик, буквально истолковав закон Ома, внимая совету Кельвина, решил повысить напряжение. Подручные быстро достали индукционную катушку, обеспечивающую разницу потенциалов несколько тысяч вольт. Изоляция морской нити терпела пытку несколько дней, затем система окончательно доломалась. Негативная реакция общественности заморозила дальнейшие работы на 7 лет.

Great Eastern

Проект 1865 года осуществляло судно Great Eastern. Три танка вместили 4300 км кабеля, палубу оборудовали специальной оснасткой. Утром 15 июля 1865 года корабль покинул бухту острова Валентиа. 31 числа пройдено 1968 км, моряки потеряли конец… Пароход затрубил к Англии, Филд организовал новое предприятие – Англо-Американскую телеграфную компанию. Собрав деньги, Великий Восток отчалил 13 июля 1866 года. Презрев капризы погоды, 27 числа команда успешно достигла противоположного берега. Следующим утром (9:00) английское сообщение цитировали передовицы Таймс.