Самые яркие искусственные спутники земли. Искусственные спутники Земли: Всё о спутниках Самый мощный спутник

В 20-м веке появились космические исследования с использованием искусственных спутников, космических зондов и пилотируемых космических кораблей. Люди проделали длинный путь с момента запуска первого искусственного спутника в 1957 году и отправили в космос несколько сверхмассивных вещей. Вот список семи самых больших объектов побывавших в космосе, посланных с Земли.

  1. Международная космическая станция (МКС)

Самая большая космическая станция, построенная человеком, МКС больше, чем футбольное поле, и имеет размеры 109 метров в длину, 73 метров в ширину и весит свыше 408 233 кг. Пилотируемая космическая станция, является орбитальной лабораторией, на которой проводятся различные научные и космические исследования, наблюдения и эксперименты, является единственным искусственным спутником, который можно увидеть невооруженным глазом с планеты Земля.

2. Космический телескоп «Хаббл»

Размером больше, чем два автобуса, с 1990 года космический телескоп Хаббл является самым крупным в своей категории. Длина космического телескопа более тринадцати метров, а весит он 12 247 кг.

3. Экологический спутник (Envisat)

Самый большой спутник, который находится на орбите Земли, мониторы Envisat в первую очередь контролируют атмосферу Земли. Десяти метровый спутник, весом приблизительно 8 210 кг, в настоящее время не работает, но все еще находится на орбите Земли.

4. Орбитальная станция «МИР»

Орбитальная станция «МИР», была Первой многомодульной обитаемой орбитальной станцией, отправленной в космос, размерами 33 метра в длину и 31 в ширину она весила 140 160 кг.

5. Сатурн V

Сатурн V, размером в 104 метра в высоту и весом 2,721,554 кг, был самой высокой, самой тяжелой и самой мощной ракетой. Сатурн V выполнил 13 миссий на своем временном отрезке, начиная с его запуска в 1967 году до 1973 года.

6. Skylab

Хотя Skylab и не такая большая как на МКС, она был первой космической станцией, которая была отправлена с Земли. Космическая лаборатория весила почти 77 111 килограмм и находилась на орбите Земли с 1973 по 1979 год.



19 января 2006 года земляне запустили зонд « » - автоматическую межпланетную станцию, которая должна будет изучить Плутон, Харон и объект в поясе Койпера. Полная миссия аппарата рассчитана на 15-17 лет. Окрестности Земли « » покинул с самой большой скоростью среди известных космических аппаратов - 16,26 км/с относительно Земли. Гелиоцентрическая скорость - 45 км/с, что позволило бы аппарату уйти из Солнечной системы без гравитационного маневра. Однако есть в этой Вселенной аппарат, созданный руками человека, который летит еще быстрее и равных ему в скорости пока нет.

Два космических зонда Voyager побили все рекорды по пройденным расстояниям. Они отправили нам фотографии Юпитера, Сатурна и Нептуна и продолжают двигаться прочь из Солнечной системы. 22 февраля 2014 года «Вояджер-1» находился на расстоянии около 19 миллиардов километров от Земли и по-прежнему отсылает нам данные - 10 часов они идут от зонда к нашей планете. Несколько лет назад , что «Вояджер-1» покинул Солнечную систему. Как зондам удается передавать данные так далеко?

Космический корабль «Вояджер» использует 23-ваттный радиопередатчик. Это больше, чем у обычного мобильного телефона, но в общем порядке вещей этот передатчик достаточно маломощный. Большие радиостанции на Земле передают десятки тысяч ватт, но все равно сигнал достаточно слабый.

Ключом к успеху, благодаря которому сигнал будет доходить вне зависимости от мощности радиопередатчика, стала комбинация трех вещей:

  1. Очень большие антенны.
  2. Направленные друг на друга антенны (земная и вояджеровская).
  3. Радиочастоты с малым количеством помех.

Антенны, которые использует «Вояджер», достаточно велики. Вы наверняка видели спутниковые тарелки у любителей телевидения. Обычно они 2-3 метра в диаметре. У антенны «Вояджера» диаметр 3,7 метра, и она передает данные, которые принимает 34-метровая антенна на Земле. Антенна «Вояджера» и антенна Земли направлены прямо друг на друга. Всенаправленная маленькая антенка вашего телефона и 34-метровый гигант - совершенно разные вещи.

Спутники «Вояджер» передают данные в 8-гигагерцевом диапазоне, на этой частоте мало помех. Антенна на Земле задействует мощный усилитель и получает сигнал. После этого отправляет сообщение обратно на зонд с помощью мощнейшего передатчика, чтобы «Вояджер» наверняка получил сообщение.

На передовой

«Вояджер-1» передает данные на Землю с 1977 года. Но члены команды, контролирующей миссию в Лаборатории реактивного движения NASA, не так давно обрадовали нас интересной новостью. 12 сентября 2013 года NASA подтвердило, что зонд вступил в область гелиопаузы, где солнечный ветер нашего Солнца уже не так силен, чтобы сталкиваться с солнечными ветрами соседних звезд. В этот момент «трехосный магнитометр» зафиксировал изменение магнитного поля, перпендикулярного направлению движения зонда. «Вояджер-1» стал первым объектом техногенного происхождения, покинувшим Солнечную систему.

Золотая Запись на борту «Вояджера»: 117 изображений Земли, приветствие на 54 языках, земные звуки

Циники - как и большинство астрономов, космологов и само NASA - говорят, что граница Солнечной системы определяется как точка, где объект перестает подвергаться воздействию солнечной гравитации. Но гравитация, как вы знаете, определяет Вселенную в огромных масштабах. И эта точка располагается на дистанции в 50 000 раз большей, чем расстояние от Солнца до Земли. «Вояджер-1» проехал 123 расстояния от Земли до Солнца (примерно 18 миллиардов километров). И ему понадобится еще 14 000 лет, чтобы при нынешней его скорости покинуть гравитационный захват Солнца.

Ничто не мешает программе «Вояджер» делать отличные наблюдения. «Вояджер-1» и его двойник, «Вояджер-2», вылетевший на 15 дней раньше, но опоздавший из-за экскурсии к Урану и Нептуну, обнаружили следы четырех газовых гигантов и множество странных астрономических явлений. И хотя «Вояджер-1» некоторое время оставался в пределах Солнечной системы, он вошел в зону, где заряженные частицы солнечного ветра сменятся пылью и другими материалами, заполняющими пространство между звездами.

За годы «Вояджеры» обнаружили ряд астрономических сюрпризов. Один из последних появился летом 2012 года, когда «Вояджер-1» обнаружил ранее неизвестное явление под названием «магнитное шоссе». В этом регионе, как показали инструменты на борту зонда, сталкиваются солнечное и межзвездное магнитные поля. Эдвард Стоун, главный по программе «Вояджера» с 1972 года, объяснил, что это происходит, когда частицы с низкой энергией внутри «гелиосферы» подменяются более высокоэнергетичными частицами из космоса.

Создатели зондов рассчитывали, что те будут достаточно крепкими и прочными, чтобы выдержать все капризы космоса. Особенно во время близкого подлета к Юпитеру и Сатурну, а также экскурсиям к Урану и Нептуну в исполнении «Вояджера-2». Поэтому когда в 1973 году «Пионер-10» измерил радиацию вокруг Урана и Нептуна и обнаружил, что она выше, чем ожидалось, команда Стоуна потратила 9 месяцев на замену и реконструкцию каждого элемента зонда, который может пострадать. Конечно, зонды были спроектированы с избыточным запасом прочности. Например, каждый из зондов несет по две копии трех отдельных компьютерных систем. Но пока что мало какие бортовые системы нуждаются в перезагрузке. Можно с уверенностью сказать, что Стоун по-отцовски гордится своим творением и его подвигами.

Забота, с которой зонды делали здесь, на Земле, тоже сыграла свою роль в успехе миссии. Когда основной и дополнительный приемники на «Вояджере-2» отказали спустя год от начала миссии, земная команда активировала резервную систему, которая работает и по сей день. В 2010 году, получив искаженное сообщение от зонда, команда провела тщательный дамп памяти, используя один из резервных компьютеров, и выяснила, что один бит в программе изменился с 0 на 1. Перезагрузка программы все исправила.

Команда ученых регулярно обновляет систему управления для обеспечения оптимального использования ресурсов зондов во время их активной работы. Только за юпитерианскую фазу «Вояджера-1» это сделали 18 раз. Возьмем, к примеру, передачу данных. Когда «Вояджеры» облетали Юпитер и Сатурн, зонды были достаточно близки к Земле, чтобы послать несжатое изображение и другие данные на относительно высокой скорости передачи: 115 000 и 45 000 бит в секунду соответственно. Но поскольку сила сигнала изменяется обратно пропорционально квадрату расстояния между передатчиками, во время исследования Урана «Вояджер-2» передавал данные со скоростью 9000 бит/сек. У Нептуна число упало до 3000, тем самым уменьшив количество фотографий и данных, которые можно отправить домой.

Большинство резервных компьютеров включаются в работу, когда основная терпит крушение. Однако одна из вспомогательных систем зондов была активирована и работала совместно с основной. Это позволило отправлять 640-килобайтные изображения Урана с потерей качества после сжатия всего до 256 килобайт.

Как говорится, все гениальное - просто. Команда Стоуна экипировала зонды передовым аппаратным обеспечением под названием дешифратор Рида — Соломона. Устройство значительно снижает уровень погрешности, мешающий корректному прочтению сообщений в случае потерь отдельных битов. Первоначально «Вояджер» использовал старую и хорошо проверенную систему, которая отсылала один бит, «корректирующий ошибки», на каждый бит в сообщении. Дешифратор Рида — Соломона правил одним битом пять других. Забавно то, что в 1977 году способ дешифрации скорректированных данных по методу Рида — Соломона еще не существовал. К счастью, к тому времени, когда «Вояджер-2» достиг Урана в 1986 году, все было готово.

Знаменитый снимок Земли «Pale Blue Dot» 1990 года: последняя миссия «Вояджера-1». 6 миллиардов километров

В настоящее время данные, которые приходят от «Вояджеров» на радиотелескопы по всему земному шару, идут со скоростью всего 160 бит в секунду. Это решение было принято сознательно, чтобы поддерживать постоянную скорость на протяжении всей миссии. Основные камеры были отключены после пролета последней планеты Солнечной системы, активными остались только несколько инструментов. Каждые шесть месяцев на протяжении 30 минут данные с 8-контактной цифровой ленты переносятся в сжатый архив на скорости 1400 бит в секунду.

Радиоизотопные термоэлектрические генераторы на основе плутония-238 будут поддерживать работу инструментов минимум до 2021 года. А к 2025 году после почти полувекового путешествия туда, где нет ничего человеческого, команда отключит зонды и будет сообщаться с ними в немного сентиментальной односторонней манере, чтобы «Вояджеры» верно шли своим курсом. И они будут лететь все дальше и дальше во тьму.

«Вояджер-1» несет достаточно ядерного топлива, чтобы продолжать служить во благо науки до 2025 года, а после смерти плыть по течению. По своей нынешней траектории зонд в конце концов должен оказаться в 1,5 световых годах от нас у звезды Camelopardalis в северном созвездии, которое выглядит чем-то средним между жирафом и верблюдом. Никто не знает, есть ли планеты возле этой звезды и обоснуют ли инопланетяне там резиденцию к моменту прибытия зонда.

Предлагаем вам узнать несколько интересных и познавательных фактов о спутниках планет Солнечной системы.

1. Ганимед — большой спутник. Это самый большой спутник не только Юпитера, но и Солнечной системы в целом. Он настолько велик. Что обладает своим собственным магнитным полем.


2. Миранда — уродливый спутник. Считается гадким утенком Солнечной системы. Кажется, словно кто-то слепил из кусков спутник и отправил его вращаться вокруг Урана. Миранда обладает самыми живописными пейзажами во всей солнечной системе: горные хребты и долины формируют причудливые короны и каньоны, некоторые из которых в 12 раз глубже Большого каньона. К примеру, если в один из таких бросить камень, то он упадет только через 10 минут.


3. Каллисто — спутник с самым большим числом кратеров. В отличие от других небесных тел Каллисто не обладает геологической активностью, что делает его поверхность не защищенной. Поэтому этот спутник и выглядит как самый «побитый».


4. Дактиль — спутник-астероид. Это самый маленький спутник во всей Солнечной системе, так как его ширина составляет всего одну милю. На фото вы можете видеть спутник Ида, а Дактиль - это маленькая точка справа. Уникальность этого спутника заключается в том, что он вращается не вокруг планеты, а вокруг астероида. Ранее ученые полагали, что астероиды малы для того, чтобы иметь спутники, но, как видите, они ошибались.


5. Эпиметей и Янус — спутники, чудом избежавшие столкновения. Оба спутника вращаются вокруг Сатурна по одной орбите. Вероятно, они раньше были одним спутником. Что примечательно: каждые 4 года, как только наступает момент столкновения, они меняются местами.


6. Энцелад — носитель кольца. Это внутренний спутник Сатурна, который отражает почти 100% света. Поверхность Энцелада заполнена гейзерами, которые выбрасывают в космос частицы льда и пыли, формирующие кольцо «Е» Сатурна.


7. Тритон — с ледяными вулканами. Это самый большой спутник Нептуна. Он также является единственным спутником Солнечный системы, который вращается в противоположную от вращения самой планеты сторону. Вулканы на Тритоне являются активными, но выбрасывают они не лаву, а воду и аммиак, которые замерзают на поверхности.


8. Европа — с большими океанами. Этот спутник Юпитера имеет самую ровную поверхность в солнечной системе. Все дело в том, что спутник представляет собой сплошной океан, покрытый льдом. Воды здесь в 2-3 раза больше, чем на Земле.


9. Ио — вулканический ад. Этот спутник похож на Мордор из «Властелина колец». Практически вся поверхность спутника, который вращается вокруг Юпитера, покрыта вулканами, извержение которых происходит очень часто. На Ио нет кратеров, так как лава заполняет их поверхность, тем самым выравнивая ее.


11. Титан — дом вдали от дома. Это, пожалуй, самый странный спутник солнечной системы. У него единственного есть атмосфера, которая в несколько раз плотнее, чем на Земле. Что же находилось под непрозрачными облаками, оставалось неизвестным на протяжении долгих лет. В основе атмосферы Титана находится азот, как и на Земле, однако она также содержит и другие газы, к примеру, метан. Если уровень метана на Титане велик, то на спутнике может пойти метановый дождь. Наличие больших ярких пятен на поверхности спутника говорит о том, что на поверхности могут находиться жидкие моря, в состав которых может входить метан. Стоит отметить, что Титан - это наиболее подходящее небесное тело для поиска жизни.

Спутник - это плотный естественный объект, который вращается вокруг планеты. Никакое конкретное научное объяснение не дает удовлетворительного ответа на вопрос о том, как появились спутники, хотя существует несколько теорий. Луна считалась единственным спутником, но после изобретения телескопа были обнаружены спутники других . Каждая планета имеет один или несколько спутников, кроме Меркурия и Венеры. У Юпитера наибольшее количество спутников - 67. Технологические достижения позволили человеку обнаружить и даже отправить космические аппараты в экспедиции к другим планетам и их спутникам.

Самыми большими спутниками в нашей Солнечной системе являются:

Ганимед

Ганимед - крупнейший спутник в нашей системе, вращающийся вокруг Юпитера. Его диаметр 5 262 км. Спутник превосходит по размерам Меркурий и Плутон, и его с легкостью можно было назвать планетой, если бы он вращался вокруг Солнца. Ганимед обладает собственным магнитным полем. Его открытие осуществил итальянский астрономом Галилео Галилей 7 января 1610 года. Орбита спутника находится на расстоянии около 1 0700 400 км от Юпитера, и ему требуется 7,1 земных дня, чтобы завершить свою орбиту. Поверхность Ганимеда имеет два основных типа пейзажей. На нем есть более светлые и молодые регионы, а также более темная кратерная область. Атмосфера спутника тонкая и содержит кислород в дисперсных молекулах. Ганимед в основном состоит из водяного льда и горной породы, и предположительно имеет подземные океаны. Название спутника происходит от имени принца в древнегреческой мифологии.

Титан

Титан - спутник Сатурна, диаметром 5 150 км, что делает его вторым по величине спутником в Солнечной системе. Он был открыт голландским астрономом Христианом Гюйгенсом в 1655 году. Спутник обладает плотной атмосферой, похожей на земную. На 90% атмосфера состоит из азота, а на остальные 10% приходятся метан, незначительное количество аммиака, аргона и этана. Титан делает полный оборот вокруг Сатурна за 16 дней. На поверхности спутника присутствуют моря и озера, заполненные жидкими углеводородами. Это единственное космическое тело в Солнечной системе, кроме Земли, которое имеет водные объекты. Название спутника взято из древнегреческой мифологии, в честь древних богов, называемых титанами. Лед и порода составляют основную часть массы Титана.

Каллисто

Каллисто - второй по размерам спутник Юпитера и третий в рейтинге самых больших спутников Солнечной системы. Он имеет диаметр 4821 км и, по оценкам ученых, ему около 4,5 млрд лет; его поверхность в основном испещрена кратерами. Каллисто был открыт Галилео Галилеем 7 января 1610 года. Свое название спутник получил в честь нимфы из древнегреческой мифологии. Каллисто вращается вокруг Юпитера на расстоянии около 1 882 700 км, и завершает свою орбиту за 16,7 земных дня. Это самый удаленный от Юпитера спутник, а это означает, что он не был в значительной степени подвержен мощной магнитосфере планеты. Водяной лед, а также другие материалы, такие как магний и гидратированные силикаты составляет большую часть массы спутника. Каллисто имеет темную поверхность, и предполагается, что под ней находится соленое море.

Ио

Ио - третий по величине спутник Юпитера и четвертый в Солнечной системе. Его диаметр равен 3 643 км. Первым спутник обнаружил Галилео Галилей в 1610 году. Это самое вулканически активное космическое тело наряду с Землей. Его поверхность в основном состоит из пойм жидких пород и лавовых озер. Ио расположен примерно в 422 000 км от Юпитера, и делает полный оборот вокруг планеты за 1,77 земных дня. Спутник имеет пятнистый вид с доминированием белого, красного, желтого, черного и оранжевого цветов. В атмосфере Ио преобладает двуокись серы. Спутник был назван в честь нимфы из древнегреческой мифологии, которая была соблазнена Зевсом. Под поверхностью Ио находится железное ядро и внешний слой из силикатов.

Другие крупные спутники

К другим большим спутникам Солнечной системы относятся: Луна (3 475 км), Земля; Европа (3 122 км), Юпитер; Тритон (2 707 км), Нептун; Титания (1 578 км), Уран; Рея (1 529 км), Сатурн и Оберон (1,523 км), Уран. Большинство наблюдений за этими спутниками проводятся с Земли. Развитие технологий дает возможность ученым отправлять космические аппараты в разные уголки Солнечной системы, чтобы получить больше информации о планетах и их спутниках.

Таблица: ТОП 10 самых больших спутников в Солнечной системе

Место в рейтинге Спутник, Планета Средний диаметр
1 Ганимед, Юпитер 5 262 км
2 Титан, Сатурн 5 150 км
3 Каллисто, Юпитер 4 821 км
4 Ио, Юпитер 3 643 км
5 Луна, Земля 3 475 км
6 Европа, Юпитер 3 122 км
7 Тритон, Нептун 2 707 км
8 Титания, Уран 1 578 км
9 Рея, Сатурн 1 529 км
10 Оберон, Уран 1 523 км

Сколько лет существует практическая космонавтика, столько же насчитывают и наблюдения космических аппаратов на небе. Миллионы людей во всем мире видели ракету-носитель первого советского спутника, которая несколько суток находилась на орбите, сотни специально подготовленных наблюдателей - сам "шарик". С тех пор в околоземном пространстве оказалось более 25 тысяч только зарегистрированных объектов, и в течение одной ночи, даже без бинокля, каждый любитель астрономии может увидеть не один десяток искусственных спутников Земли (ИСЗ).

Обычно неяркие, они медленно ползут между звездами в разных направлениях. Яркость одних постоянна, у других периодически изменяется, третьи вспыхивают. Величественно проплывает орбитальный комплекс "Мир" - несомненный фаворит на российском небе. Периоды его вечерней и утренней видимости повторяются примерно через 60 суток, хотя этот интервал немного плавает со временем года, а яркость часто достигает - 2 m .

Отождествить увиденный спутник непросто: для этого нужно сделать одну-две точные засечки положения объекта в определенные моменты времени, а затем выбрать наиболее подходящего кандидата из списка, выданного специальной программой, в которую введены "свежие" орбитальные элементы восьми с лишним тысяч известных объектов. (Подразумеваю, что в вашем распоряжении есть персональный компьютер и выход в сеть Интернет. Без того и другого вы резко ограничены в своих возможностях.)

Описывать все прелести и все сложности наблюдения ИСЗ можно долго, но сейчас я расскажу только об одном классе спутников, необычайно яркие вспышки которых осенью 1997 года произвели настоящий фурор. Слово первооткрывателю, канадцу Брайану Хантеру: "Я проводил наблюдения вечером 16 августа 1997 года, когда мое внимание привлек очень яркий объект на северо-востоке. Трудно дать разумную оценку яркости, но он был намного ярче Юпитера. Величина -2 m - это только догадка типа: "Ух, какой яркий!". Он оставался очень ярким в течение нескольких секунд, затем ослабел... до 6-й величины". Хантер однозначно отождествил этот объект с одним из спутников серии "Иридиум".

На следующий день он отправил результаты наблюдений вспышки в электронную конференцию, связывающую наблюдателей ИСЗ, имеющих выход в компьютерную сеть Интернет. Понятно, что кратковременное увеличение яркости спутника на восемь величин привлекло большое внимание. В течение двух дней из США, Швеции, Франции и Бельгии пришли сообщения о еще нескольких схожих наблюдениях, а вскоре подобные отчеты пошли потоком.

Пришла, наверное, пора представить "героя" нашего рассказа. "Иридиум" - это система низкоорбитальной связи, включающая 72 спутника (66 рабочих и 6 резервных), расположенных на высоте 780 км в 6 орбитальных плоскостях с наклонением 86 градусов. Спутники запускаются на ракетах трех стран: американской "Дельта-2" (по пять за раз), нашем "Протоне",(по семь) и китайской CZ-2C (по два). Система еще не развернута полностью: первый запуск был осуществлен 5 мая 1997 года, а на 31 декабря того же года было выполнено девять пусков (выведено всего 46 спутников).

Корпус каждого спутника имеет форму трехгранной призмы с ребром основания около 1 м и длиной около 4 м. Аппарат летает в "вертикальном" положении. В верхней части крепятся две панели солнечных батарей, а от нижних ребер призмы отходят вверх и вбок три основные рабочие антенны. Нормальная звездная величина "Иридиума" не превышает обычно 7-й величины. Так почему же он вспыхивает, да еще так сильно?

После обработки первых двух десятков наблюдений стала понятна геометрия этого явления: источниками вспышек являются рабочие антенны - полированные прямоугольники размером 0.86x1.88 м, наклоненные под углом в 40 градусов к вертикальной оси аппарата. Антенна просто-напросто пускает солнечный зайчик! При этом если угол между отраженным солнечным лучом и направлением на наблюдателя меньше 5 градусов, то он видит вспышку средней яркости, а если меньше одного - чрезвычайно яркую вспышку.

Теоретический предел яркости вспышки "Иридиума" составляет примерно -7.5 m . В самом деле, антенна спутника, эквивалентная кругу диаметром 1.27 м и находящаяся в 800 км от наблюдателя, будет светить отраженным солнечным светом так же, как зеркало диаметром 237.5 км, находящееся на расстоянии от Земли до Солнца. Площадь такого зеркала составляет 2.91·10 -8 солнечной, что соответствует разнице в блеске в 18.8 m (видимая звездная величина Солнца, как известно, равна -26.2 m). Вспышка происходит обычно при фазовом угле спутник-наблюдатель-Солнце в интервале 125-150°, хотя иногда и при 90°. Общая продолжительность вспышки, видимой невооруженным взглядом, составляет 30-60 секунд. Наиболее же яркая часть вспышки длится несколько секунд.

К концу сентября прошлого года американцы Роб Мэтсон и Рэнди Джон написали две программы IridFlar и SkySat, предсказывающие вспышки на основании введенных в них орбитальных элементов спутников. Эти программы позволили заблаговременно готовиться к предстоящим вспышкам, в результате чего вскоре были получены прекрасные фотоснимки и видеозаписи этих явлений.

Не менее интересными оказались результаты визуальных наблюдений. Так, было подтверждено, что благодаря высокой яркости "Иридиумов" в момент вспышки, их можно увидеть и сквозь довольно густую облачность, и даже в дневное время! Но и это, оказывается, еще не все... Всем известно, что спутники видны только тогда, когда внизу у наблюдателя темно, но на высоте полета светит Солнце. Эта истина была непреложной 40 лет и перестала быть таковой 9 января 1998 года, когда американец Рон Ли наблюдал небольшую вспышку "Иридиума" светом, отраженным от... Луны!

Личные достижения автора заметки в наблюдениях "Иридиумов" пока невелики. 2 декабря прошлого года я наблюдал вспышку спутника примерно -4 m на высоте 28° на фоне заката прямо из окон редакции журнала "Новости космонавтики". Еще две вспышки величиной не ярче -З m удалось пронаблюдать в декабрьские холода. Автор пользовался для прогноза программой IridFlar, которая дает упорядоченный по времени прогноз вспышек для заданной точки, состоящий из времен начала, максимума и конца явления, прямого восхождения и склонения, азимута (от точки севера) и высоты, расчетной звездной величины, а также координат точки прямого отражения (места, где спутник будет иметь максимальную яркость). Нужно отметить, что фактическая величина может отличаться от прогнозируемой примерно на 1 m из-за отклонений в ориентации спутника и его антенны от номинальных и погрешности знания собственных координат.

Как часто происходят вспышки? Для ответа на этот вопрос я "прогнал" программу IridFlar на неделю - с 12 по 18 января для наблюдателя, находящегося в Москве. Получилось 27 просто ярких вспышек в интервале от З m до -З m , а также три супервспышки с величинами -5.0 m , -5.9 m и -8.3 m .

Столь высокая частота вспышек, без сомнения, может представлять собой очередную угрозу для астрономических наблюдений. Одним из первых к этой проблеме привлек общее внимание англичанин Дэвид Брайерли: "В то время как все мы радуемся новизне ярчайших вспышек, подумал ли кто-нибудь о давно страдающих астрономах? По мере того как будет запущено все больше "Иридиумов", вспышки будут все чаще и чаще. На наших глазах появляется "световое загрязнение" нового типа, и мне кажется, что кто-нибудь должен предупредить разработчиков "Иридиумов" о том, что они сделали с ночным небом".

Эта же тема была поднята американцем Полом Мэли на конгрессе Международной астронавтической федерации, проходившем прошлой осенью в Турине. Вступив в контакт с представителями компании "Моторола", являющейся изготовителем космических аппаратов "Иридиум", он описал им ситуацию со вспышками. Чтобы описание было нагляднее, Пол продемонстрировал собеседникам фотографии наиболее ярких вспышек, но, как и следовало ожидать, в ответ он услышал, что внесение в проект каких-либо изменений на этом этапе уже невозможно. "Ситуация такова, что "Иридиумы" уже наверху и останутся там очень и очень надолго", - такова была реакция представителей "Моторолы".

К счастью, эти вспышки вполне предсказуемы - в отличие от самолетов и прочих благ цивилизации. Однако следует помнить, что "Иридиум" может стать лишь первой ласточкой. Ведь на подходе уже новые низкоорбитальные системы связи: "Фаисат" - 26 спутников, "Орбкомм" - 28, "Глобалстар" - 48, "Селестри" - 63, "Скайбридж" - 64 и, наконец, "Теледезик", в которую входят сразу 384 спутника! И если вся эта готовящаяся к запуску армада будет вести себя аналогично вспыхивающим "Иридиумам", то положение может оказаться гораздо серьезнее.

Игорь Анатольевич Лисов - редактор журнала "Новости космонавтики", сотрудник компании "Видео-Космос ". Автор благодарит Брайана Хантера, Пола Мэли, Рэнди Джона, Брама и Криса Дорреманов, Тома Смита и Рона Ли за помощь в работе над статьей.